GRACL (.grc)

Defne Sonmez dys2109 System Architect
Eilam Lehrman esl2160 Language Guru
Hadley Callaway hcc2134 Manager

Maya Venkatraman mv2731 System Architect
Pelin Cetin pc2807 Tester

1. Introduction & Motivation

GRACL (GRAph Concurrency Language) improves the efficiency of common
graph algorithms such as Breadth-First-Search (BFS), Depth-First-Search (DFS), Dijkstra,
and Traveling Salesman Problem. GRACL uses concurrency (with lightweight
multithreading as in Go) and allows programmers to initialize and modify graphs easily
with built-in data structures specific to our language. This combination enables the user
to implement concurrent graph algorithms that converge more quickly than their
traditional counterparts. Improved runtime efficiency has enormous potential to improve
modern-day computing in areas such as transportation networks, metadata
relation-building database systems, packet switching, neural networks, etc. We were
inspired by some of the past projects focused on graphs (such as GRAIL from Spring
2017) to use syntax with elements from Java, Python, and C. We plan to make the
following features available to the programmer: graphs, nodes, threads, and locks. We
will discuss their implementation at greater length in our “Syntax” section.

2. Language Overview

GRACL is statically scoped, as well as strongly and statically typed to fully
leverage the efficiency of the compiler. Like Java, GRACL creates copies of the
references and passes them as values to methods.

GRACL supports mutable data types because immutability does not make sense
for our application space. In typical graph searches, one must maintain a frontier or data
structure of visited nodes. Immutability would force processes to create a new frontier
or visited node structure every single time a new node is visited, making mutable objects
far preferable.

We will ensure that threads are collected under the hood after they terminate and
that orphan or zombie processes are properly reaped. There will be strict evaluation.
While there will be no complete garbage collection, we may consider freeing graphs,
nodes, lists, and strings for the user at the end of their program execution if time
permits.

3. Syntax
a. Primitives

i. bool

ii. char
iii. double
iv. int
v. void

vi. any-atype that allows nodes to store any type of data in their datafields

b. Objects

String Character arrays with basic functionalities emulating
Java Strings, primarily used for printing

List A standard linked list [] with basic functionalities
emulating Java LinkedLists

Node An object that has a data field and a list of
neighboring nodes

Graph A list of nodes connected by directed or undirected
edges representing a graph data type. Data types in
the graph do not need to be homogeneous

Thread A lightweight process sharing memory below the
stack with other threads, much like a pthread in C.
Initialized with a function that starts the routine the
user wishes to have executed

RwLock A reader/writer lock that allows multiple processes
to read protected data simultaneously, but only
allows one thread to write at once. No thread may
read while another thread is writing

Tuple A combination of two data types

c. Integer and Double Operators

i‘ +I -I /l *l %I +=l -=

d. Logical Operators
Lo && LY

e. Control Flow

<=, >=, == I=

'

/**/

Multiline comment

/1

Single line comment

Signifies the end of a statement

if(...) 0

else{};

Conditional statements

for(...){};
for(...in ..){};
while(...){};

Loops

int myFunc(int x) {
return x;

¥

Example function

f. Node Properties and Built-In Functions

createNode(String name, any
data, Node[] neighbors)

Creates a new node, setting its name, data, and list
of neighbor tuples (weight, destinationNode).
Returns an error if the passed-in name is not unique

.name Provides a unique string label by which to access
the node

.data Returns data stored in the node

.neighbors Returns a list of neighbor nodes

.updateName(String name)

Updates the name field on the node to be the new
name passed in

.updateData(any data) Updates the data field on the node to be the new
data passed in
.rwLock() Some concurrent graph algorithms require nodes to

(Note: **possible)

be marked as complete so multiple threads don’t
visit them. We propose creating locks for nodes so
that no two threads try to mark a node as complete
at the same time

**We recognize that it may be difficult to expect the
user to protect node accesses with locks. This is
something we would appreciate feedback on in our
proposal.

g. Graph Properties and Built-In Functions

createGraph(String
formattedEdges)

Creates a new graph out of a user’s string of edges.
Each edge should be formatted
start-weight-destination for an undirected edge or
start-weight->destination for a directed edge. When
creating each node, the start is taken as the node’s
name and the node’s data field is left blank

Example input: “B-4-C, C-7->D, A-3->C, D-3-B”

.nodes

Returns a list of nodes in the graph

.edges

Returns a string representation of all edges in the
graph

.addDirectedEdge(Node A,
Node B, int weight)

Adds to node A’s neighbor list a directed edge to
node B, representing it as a tuple (int weight, node
destination)

.addUndirectedEdge(Node A,
Node B, int weight)

Adds an undirected edge between node A and node
B. Under the hood, this calls .addDirectedEdge()
twice, once to add a directed edge from node A to
node B and once to add a directed edge from node
B to node A

.updateDirectedEdge(Node A,
Node B, int weight)

Updates the directed edge from node A to node B to
have a new weight

.updateUndirectedEdge(Node
A, Node B, int weight)

Updates the undirected edge between node A and
node B. Under the hood, this calls
.updateDirectedEdge() twice, once to update the
directed edge from node A to node B and once to
update the directed edge from node B to node A

.removeDirectedEdge(Node A,
Node B)

Removes the directed edge from node A to node B

.removeUndirectedEdge(Node
A, Node B)

Removes the directed edge from node A to node B,
and then removes the directed edge from node B to
node A

.addNode(Node n)

Adds the passed-in node to the graph

.removeNode(Node n)

Removes the passed-in node from the graph and
deletes corresponding edges

h. Thread Properties and Built-In Functions

createThread(any func, any
param1, any param2, ...)

Creates a thread that begins by executing the
function func applied to the given parameters. This
returns a thread object which GRACL detaches
upon completion behind the scenes

joinThreads(Thread][] threads)

Blocks until all threads specified in the list
complete

i. RwLock Properties and Built-In Functions

createRwLock()

Creates an rwlLock

.racquire()

Before entering a critical section of code, a thread
has to wait to acquire the rwLock for reading. Once
the lock is acquired it may execute the critical
section

.wacquire()

Before entering a critical section of code, a thread
has to wait to acquire the rwLock for writing. Once
the lock is acquired it may execute the critical
section

Irelease()

After executing a critical section, a thread must
release the rwLock for reading

.wrelease()

After executing a critical section, a thread must
release the rwLock for writing

j. Other Functions

print(“Hello world”);

Print function that prints strings

4. Basic Operations & Examples
a. Making and modifying a graph:

Graph g = createGraph("B-4-C, C-7->D, A-3->C, D-3-B");
A.updateData(True);

B.updateData(5);

C.updateData("Eilam");

D.updateData("GRACL");

g.removeData(D);

Node E = createNode("'E", 7, [(6,A)]);

g.addNode(E) ;

b. A simple concurrency example:

// Assuming this gets allocated on the heap, as in Java
String buf = "Hello";

RwLock lock = createRwLock();

void startRoutine() {
lock.wacquire();
print(buf);
buf = "World";

lock.wrelease();

for (int i = 0; i < 2; i++) {

createThread(startRoutine);
/*
Sample output:

"Hello"
"World"

*/

c. Concurrent DFS:

Node[] path = [];
Node[] visited = [];
RwLock visitedLock = createRwLock();

RwLock pathLock = createRwLock();

bool goalTest(Node goal, Node current){
return goal.name == current.name;
// Searching for a specific node object using its unique name

void normalDFS(Graph graph, Node current, Node goal, Node[] visited, Node[] myPath){
pathLock.racquire();
// Another thread found the goal already and this thread should terminate
if (path != []) {
// Release the read lock on path
pathLock.rrelease();
return;
} else {
// Release the read lock on path
pathLock.rrelease();
myPath.add(current);
// If goal found
if (goalTest(goal, current)) {
// Modify shared memory for path to goal
pathLock.wacquire();
path = myPath;
// Release the write lock on path
pathLock.wrelease();
return;
} else {
// Add current to shared memory list of visited nodes
visitedLock.wacgquire();
visited.add(current);
// Release the write lock on wvisited
visitedLock.wrelease();
Node[] neighbors = current.neighbors;
for ((weight, neighbor) in neighbors) {
visitedLock.racqguire();
// If visited doesn't contain neighbor, call normal DFS on neighbor
if (!visited.contains(neighbor)) {
// Release the read lock on visited
visitedLock.rrelease();
normalDFS(graph, neighbor, goal, visited, myPath);
} else {
// Release the read lock on visited

visitedLock.rrelease();

}

return;

A

Node[] multithreadDFS(Graph graph, Node start, Node goal) {

if (goalTest(goal, start)) {
return [];

} else {
Node[] neighbors = start.neighbors;
visited.add(start);
Thread[] threads = [];
// Create a thread for each top-level child of start to perform search in parallel
for ((weight, neighbor) in neighbors) {

threads.add(createThread(normalDFS, graph, neighbor, goal, visited, [start]));

}
joinThreads (threads);

return path;

5. References
a. GRAIL: A Graph-Construction Language Proposal (Spring 2017):
i. cs.columbia.edu/~sedwards/classes/2017/4115-spring/proposals
/GRAIL.pdf
b. Grape (.grp) (Fall 2018):
i. cs.columbia.edu/~sedwards/classes/2018/4115-fall/proposals/Gr
ape.pdf
c. Pass by Reference vs. Pass by Value in Java:
i. tutorialspoint.com/Pass-by-reference-vs-Pass-by-Value-in-java
d. Goroutines:
i. gobyexample.com/goroutines
e. Java Implementation of DFS:
i. geeksforgeeks.org/depth-first-search-or-dfs-for-a-graph/
f. Concurrent DFS:
i. qgithub.com/ZdravkoHvarlingov/Concurrent-DFS
ii. link.springer.com/chapter/10.1007/978-3-642-54862-8_14
g. Parallel BFS:
i. en.wikipedia.org/wiki/Parallel_breadth-first_search

http://www.cs.columbia.edu/~sedwards/classes/2017/4115-spring/proposals/GRAIL.pdf
http://www.cs.columbia.edu/~sedwards/classes/2017/4115-spring/proposals/GRAIL.pdf
http://www1.cs.columbia.edu/~sedwards/classes/2018/4115-fall/proposals/Grape.pdf
http://www1.cs.columbia.edu/~sedwards/classes/2018/4115-fall/proposals/Grape.pdf
https://www.tutorialspoint.com/Pass-by-reference-vs-Pass-by-Value-in-java
https://gobyexample.com/goroutines
https://www.geeksforgeeks.org/depth-first-search-or-dfs-for-a-graph/
https://github.com/ZdravkoHvarlingov/Concurrent-DFS
https://link.springer.com/chapter/10.1007/978-3-642-54862-8_14
https://en.wikipedia.org/wiki/Parallel_breadth-first_search

