

GA$$P Programming Language
A breath of fresh air

Team Members
Adam Fowler (ajf2177) - Language Guru
Patrycja Przewoznik (pap2154) - Tester
Sam Weissmann (spw2136) - Manager
Swan Htet (sh3969) - System Architect

Yuanxin Yang (yy3036) - System Architect

1. Language Overview
GA$$P is an statically typed object-oriented general purpose programming language with its
roots in the C++ and Java programming languages offering inheritance with an everything is an
object worldview.

The syntax of GA$$P will be familiar to anyone who has previously programmed in Java or
C/C++ as GA$$P uses braces to delineate scope and includes all of the usual types and
operations (e.g. int, float, boolean, char, and string) and variables with static type declarations.
The inclusion of strong static typing will allow GA$$P to protect the user from a host of errors
using type checking on functions, methods, and operators. GA$$P further offers the ability for
users to define their own types with inherent behavior.

The goal of the GA$$P language is to enhance the familiar base of Java and C++ by replacing
primitive types with objects and removing null expressions which Tony Hoare famously referred
to as his “Billion dollar mistake”.

● Strong static typing allowing type checking for safer code
● Everything is an object (MVP)
● No nulls (Optional instead)
● Inheritance / virtual method dispatch (stretch goal)
● Exceptions

2. Standard Library
GA$$P will feature a core set of built in operators, data types as objects, functions, and I/O
functionality.

2.1. Operators

2.2. Built-in Data Types

Arithmetic +, -, *, /, %, **, ++, --

Comparison ==, !=, <, <=, >, >= ,

Logical && (and), || (or), ! (not)

Bitwise &, |, ^, <<, >>, ~,

Name Description Operators Syntax

int 32 bit integer All int x = 3;

float 64 bit float All float x = 3.14;

char 8 bit character All char x = “a”;

2.3. Built-in functions and I/O
GA$$P’s standard library will include a small set of core functions; will support IO with the stdin,
stdout and stderr channels; and will also have a larger set of mathematical functions available
via a linked C library.

2.4. Control Flow and Scope
GA$$P supports if/else statements, switch statements, for loops, and while loops. Scope is
defined using curly braces.

2.5. Reserved Words

3. Syntax
The syntax of GA$$P is derived primarily from C++ and Java.

3.1. Function Syntax
GA$$P borrows much of its function syntax from C++. Functions pass arguments by value and
does not provide support for default arguments, variable arguments, or overloading.

boolean Binary true/false value Logical, Comparison bool x = true;

array Fixed length collection Comparison int[3] x = [1,2,3];

string Immutable string + (concat) str x = “Hello World”;

Built in functions

min() Returns smallest number

max() Returns largest number

sqrt() Computes square root of a number

random() Generates a random number

exp() Calculates a number raised to some power

quicksort() Performs quicksort on an array

Control if, else, switch, case, for, while, break, return

Types int, float, bool, char, array, string,

Other true, false, class, const, void, private, public, extends,

print

Function declaration

Function with a return type

Without a return type

Functions may be invoked by name within other functions in the following manner:

 3.2 Comments
Multiline comments are delimited with /* comment here */ syntax. GA$$P does not support
single line comments.

return_type fn_name(data_type arg1, data_type arg2, ...){

 ;

}

int foo(int a, int b){

return a*b;

}

void foo(){

;

}

void foo(){

printf(“Hello World!”);

}

void foo1(){

foo();

print(“Wassup”)

}

4. Examples
Quicksort implemented in GA$$P

/* initially low and high refers to index 0 and index n-1, where n

is the size of the array

*/

int partition (int a[], int low, int high)

{

int pivot = a[high];

int i = (low-1);

for (int j = low; j <= high-1; j++)

{

if (a[j] <= pivot)

{

i++;

int temp = a[i];

a[i] = a[j];

a[j] = temp;

}

}

int temp = a[i+1];

a[i+1] = a[high];

a[high] = temp;

return (i+1);

}

void quickSort(int a[], int low, int high)

{

if (low < high)

{

int split = partition(a, low, high); /* split is the

partition index */

quickSort(a, low, split-1);

quickSort(a, split+1, high);

}

}

