
CaRdY

Katrina Zhao (kz2335), Kenya Plenty (kgp2111), Liseidy Bueno (lb3347), Pazit

Schrecker (prs2143), Lindsey Wales (lbw2149)

What is CaRdY?

CaRdY is an innovative new programming language designed to make the

implementation of text-based card games as seamless and easy as

possible. Because CaRdY aims to take all the hassle out of coding your

own card game, the language provides built-in algorithms to control the

flow of the game (ie shuffling, drawing/dealing, displaying round results,

switching turns, etc.) and a pre-built and customizable 52 card Deck class.

It is important to note that CaRdY is meant to be used in coding one

player (human vs. computer) card games, but the language is not intended

to facilitate the creation of multiplayer card games that can be played

across consoles or hosted on a server of some kind.

Why CaRdY?

While it’s possible to create a console-based card game with Java or

Python, the programmer has to go through the process of designing

separate classes for each component of the game. Decisions like what

data structure to represent the rules with and how the different classes

will interact with each other can be tedious and repetitive. With CaRdY,

much of the grunt work is taken care of and the programmer can instead

focus exclusively on programming the rules of the game as efficiently and

smoothly as possible. In short, CaRdY is the perfect language to help you

create the console card game of your dreams.

What does CaRdY look like?

From a syntactic perspective, CaRdY borrows heavily from Python because

of its general ease of readability. On top of this, CaRdY will incorporate

Java’s strong typing policies in order to make coding the game rules as

simple as possible. These elements will also ensure that the programmer

can safely and easily override the game scaffolding that CaRdY has

provided them with. With these features in place, the programmer can

easily customize the flow of the game to meet their specific needs.

Syntax:

Types:

str: ​ array of ASCII characters

int: ​ 32-bit signed integer

float:​ 32-bit signed floating point number that contains a decimal.

Floats can also be scientific numbers with an “e” to indicate power of

10.

bool: ​ 8-bit boolean variable

*CaRdY is a strongly typed language, so types need to be declared.

Data types are set upon assignment.

Operators:

Assignment Operators:

= : ​ assigns a value to a variable (x = 5)

+= : ​ adds a value to a variable and then sets the variable to

that result (x += 5 is the same as x = x + 5)

-= : ​ subtracts a value from a variable then sets the variable to

that result (x -= 5 is the same as x = x - 5)

*= : ​ multiplies a value to a variable then sets that variable to

that result (x *= 5 is the same as x = x * 5)

/= : ​ divides a value by a variable then sets that variable to that

result (x /= 5 is the same as x = x / 5

//= :​ divides a value by a variable then rounds that result down

to the nearest whole number and sets the variable to that

results (x //= 5 is the same as x = x // 5)

%= : ​ divides a value by a variable then sets the value to the

remainder of the result (x %= 5 is the same as x = x % 5)

Comparison Operators:

== : ​equals (x == y)

!= : ​ does not equal (x != y)

> : ​greater than (x > y)

< :​ less than (x < y)

>= : ​ greathan or equal to (x <= y)

Logical Operators:

and: ​ returns true if both statements are true (x>5 and x<10)

or: ​ returns true if one statement is true (x>5 or x<3)

not: ​ returns false if the result is true (not (x>5))

Identity Operators:

is: ​returns true if two variables are the same object in the same

memory location (x is y)

is not ​: returns true if both variables are not the same object (x

is not y)

Membership Operators:

in: ​returns true if a specified value is present in a sequence (x

in y)

not in:​ returns true if a specified value is not present in a

sequence (x not in y)

Collections:

Lists: ​ lists store multiple objects in a single variable. Lists in CaRdY

function similarly to lists in Python.

Sets: ​like lists, sets store multiple objects in a single variable, but are

unindexed and unordered. Sets in CaRdY function in the same ways

as Python sets.

Dictionaries: ​dictionaries store key/value pairs. Dictionaries in

CaRdY are similar to dictionaries in Python.

Objects and Classes:

Card(type, color, number): ​Card()​ ​allows the user to create custom

card objects to be added to a deck. The type attribute must be

specified.

Player(score, hand_size, hand): ​Player()​ ​creates a player and keeps

track of their cards.

Discarded: ​discarded is a list of discarded card objects.

Built-In Functions:

createDeckCustomized({‘type’: (color, number, num_copies), ….}):

this function takes a dictionary as a parameter where the keys are

card characteristics (e.g. type) and the value is a tuple containing a

list of the secondary characteristics (e.g. colors) and the number of

cards to create of that type (see code below for an example creating

an Uno deck).

createDeck(num_copies, color, number, type): ​This function makes a

list of card objects as the deck by making the specified number of

copies of every combination of colors, numbers, and types from the

lists specified beforehand (see sample code for example). This is

useful for creating simpler decks.

add(): ​adds card objects to the list on which it’s called (i.e.

myDeck.add(myCard)).

createStandardDeck(): ​ creates a regular deck of 52 playing cards.

shuffle(myDeck): ​ takes in a deck or list of cards and shuffles it.

deal(number):​ deals a certain number of cards to the player’s hand.

Cards are removed from the deck when they’re added to the player’s

hand.

deal(player):​ deals cards to fill the player’s hand.

discard(): ​ takes a card from the player’s hand and puts it into the

discard list.

draw(number)​: the player draws the specified number of cards from

the deck to add to their hand. This deletes the card objects from the

deck list and adds it to the player hand list.

display(): ​ quick output for player to check their cards/scores, takes

two types of inputs:

display(player.hand):​ input is the player ‘s hand

display(player.score): ​ input is the player’s score

input(): ​allows the user to input a variable from the keyboard. This

variable can be read and used in the program.

print(): ​takes in a data type as parameter and prints it out in the

console.

reset(): ​starts a new game of cards. Deletes current hands and player

scores but doesn’t delete the deck and players that have been

created.

quit(): ​ quits the game. Deletes all created decks, cards, hands,

players. Ends a program completely and the user will have to rerun

the program to play again.

Indentation and Brackets:

Indentations are only used for readability. Brackets ({ }) are used to

denote blocks of code.

Comments:

Comments start with the hashtag symbol (#) on each line.

Semicolons

Similar to Python, semicolons are not necessary in CaRdY.

Reserved words

And, break, Card, class, color, del, Deck, else, False, for, if, in, is,

player, return, True, type, while

Sample Code:

GCD Algorithm:

def gcd(x, y):

if (x>y):

int lo = y

else

int lo = x

for i in range(1, lo+1):

if((x%i==0) and (y%i==0):

gcd = i

return gcd

Creating a simple deck:

var colors = [“red”]

var types = [“diamonds”, “hearts”]

var numbers = [“A”, “2”, “3”]

var myDeck = createDeck(1, colors, numbers, types)

the list myDeck now contains 6 card objects that all

have the attribute “red” for color. The deck has one

ace of diamonds, one ace of Hearts, one 2 of Diamonds,

one 2 of Hearts, one 3 of Diamonds, and one 3 of

Hearts.

Creating an Uno Deck:

var unoColors = [“yellow”, “blue”, “red”, “green”]

var myDeck2 = createDeckCustomized({‘Draw2’:

(unoColors, null, 2), ‘Draw4’: (unoColors, null, 2),

‘1’:(unoColors, null, 2), ‘2’:(unColors, null, 2)})

the list myDeck2 now creates a list of 32 cards: 8

Draw 2 cards, 2 of each color; 8 Draw4 cards, 2 of

each color; 8 ‘1’ cards, 2 of each color; 8 ‘2’ cards,

2 of each color. Because the type here is the number

or type of card, the “number” attribute is entered as

null.

