
CGC Proposal

Lieyang Chen, Tianze Huang, Zhuoxuan Li, Fanhao Zeng
{lc3548, th2887, zl2890, fz2320}@columbia.edu

January 23, 2021

1 Overview

The CGC programming language is a language built upon C language, but
comes with many handy syntax and features, and most importantly added
garbage collection feature. In addition to the primitive data types and pointer
similar to C, we provides a new built-in object type Array that could be used
to wrap all primitive data types.

• Garbage collection

The CGC language provides a garbage collector which will finds unused
objects on the heap and deletes them to free up memory without the user
knowing it. However the user can still manually empty free up memory
similar to C.

• Handy syntax/features

The CGC language will provide built-in methods for Array type, such
as len, push, pop.The CGC may also support some keyword like auto,
which is capable of deducing the type of a declared variable. The CGC
also support control flows like For Loops

2 Language Details

2.1 Data Types and Operations

Data types:

• int, char, float, Array

• pointer

The primitive data types of CGC are int, char, float. Besides them,
CGC provides a new built-in object type Array that could be used to wrap

1

all primitive data types as well as itself (e.g., c below). Array keyword
will evaluate the size and check whether the size is legal(size>0) at run
time. If the size is not explicitly written(e.g., Array<int>d in the exam-
ple), the size will be determined by counting the number of elements it is
assigned. In addition, if the Array object is successfully created, it will
implicitly contain the value of array size inside its data structure. Array

object is initialized by copying each element of the right operand, and the
Array is type mutable. For example, the statement b[1] = ‘3’ is legal
in CGC. Beyond primitive data types and Array, CGC also allows user
to access the address of a variable through a pointer. A pointer can be
created using this way, int* x = &y.

Array examples:

Array<int>[4] a = {1,2,3,4}; // Array of ints

Array<char>[4] b = "1234"; // Array of chars

b[1] = ’3’; // Array indexing

Array<Array<int>>[2] c = {{1,2},{1,2,3}}; //Array of arrays

Array<int> d = {1,2}; //Array without explicite size

Operations:

• int: +, -, *, /, ==, ++, –, +=, -=, <, >, =<, >=, =, !=, &&, ||, !,
*(dereference), &(reference)

• char: +, -, *, /, ==, ++, -, +=, -=, <, >, =<, >=, =, !=, &&, ||, !,
*(dereference), &(reference)

• float: +, -, *, /, -, +=, -=, <, >, =<, >=, =, ==, *(dereference),
&(reference)

• Array: +(concatenate), =, ==, *(dereference), &(reference), []

Examples:

Array<int>[4] a = {1,2,3,4};

Array<int>[1] b = {5};

return a + b //returns {1,2,3,4,5}}

2.2 Keywords

• while, for, if, else, elseif, return, int, float, char, Array,

void, const, len, resize, push, pop, auto, new, delete, class,

static, printf

2

2.3 Control Flow

2.3.1 For Loops

There are two ways to write a For Loop in CGC:

//first format

Array<int>[3] array = {1,2,3};

for (auto& x in array) {

++x;

}

//second format

for (int i = 0; i < len(x); i++) {

++x[i];

}

2.3.2 While Loops

CGC provide a more convenient and concise way to write a while loop:

//first format

int k = 0;

while(k < 10) {

--k;

}

//Second format

while(int i = 0; i < 10) {

// can choose to declare i inside while expression if i is not

defined yet

--i;

}

2.4 Functions

1. C-like function declaration

int fun(Array<int>& x, int y) {

return x[len(x)-1] + y;

}

//support recursion

void rec(int i) {

if (i != 0) {

i--;

rec(i);

3

}

}

//class

class foo {

void get_bar() {

return bar;

}

int bar;

}

2.5 Comments

Single-line comments use double backslashes (//). Multi-line comments are
denoted with a /* */ notation. For example:

int x = 3 // This is a single-line comment

/*

And this is a multi-line comment

*/

2.6 Memory

The CGC language will by defalut ”pass by value” when calling a function.
An argument could be passed by reference by using &. (e.g., ...). The CGC
language will use the new keyword to allocate memory on heap. A garbage
collector will be implemented to take care of the memory allocated on the heap.

3 Declarable Storage Class

The CGC language maintains a keyword static, which is a declarable storage
class. A variable without a storage class declaration in a block, will be treated
as a local variable of that block, and it will be discarded once the end of the
block has been executed.In contrast, a static local variable is also local in a
block, but it retains its value independently and will not be discarded on exit
of the block.

int Example1()

{

int a = 0;

a++;

return a;

//default local variable’s scope only within the block

}

int Example2()

4

{

static int a = 0;

a++;

return a;

//static local variable persists until end of the program

}

int main()

{

while(int i = 0; i < 3)

{

printf("Round %d\n", i + 1);

printf("auto variable = %d\n", Example1());

printf("static variable = %d\n", Example2());

i++;

}

//By default, a local variable initialized every iteration

//static variable contains previous value and increment

return 0;

}

4 Type Inference

CGC has the capability of type inference, by using auto keyword. Any vari-
able declared to be auto with valid initialization expression, its type will be
automatically deducted.

int autoExample()

{

//type inference

auto a, b, c = 1, 2, 3; //int

auto i, j, k = 2.0, 3.4, 5.5; //float

auto x, y, z = ’X’, ’Y’, ’Z’; //char

auto *d = new auto(i); //pointer

}

5 Bound checking

CGC will do bound checking so that a function will not unintentionally mod-
ify unrelated data. For example, the following code will results in a compile
error.

Array<int>[5] x = {1,2,3,4,5}; //Some initialization

x[6] = -1; // Compile error

5

6 Examples

//garbage collector example:

int example1()

{

int *example = new int(1);

*example = 10;

return *example;

//garbage collector will free the memory later

}

// A simple binary search algorithm in CGC

class example2

{

int binarySearch(int target)

{

if (array[0] == target) return 0;

// binary search

while (int left, right = len[array] - 1; left < right)

{

int mid = left + (right - left) / 2;

if (array[mid] == target) return mid;

else if (array[mid] < target) left = mid + 1;

else right = mid;

}

return -1;

}

int setArray(Array<int> a)

{

array = a;

}

Array<int> array;

};

6

