

C-net Programming Language Proposal

Rediet Bekele - rsb2179 - Manager

Kidus Mulu - km3533 - Language Guru

William Oseghare -who2103 - Systems Architecture

Bruk Zewdie - bbz2103 - Tester

Motivation

Our team wants to design a C-like language that is easy to use for file and network I/O. The

language, named C-net, will contain a subset of C functionality coupled with additional elements

that will allow for simpler network/file programming through succinct code and easy

programmer interaction with file and network I/O. In addition to this, C-net incorporates a

simplistic framework for multithreading to allow for use-cases such as listening for connections

on different threads. In the process, we wanted to discard C’s semantics for dynamic memory

allocation and have it so that most program data goes on the heap by default like in Java.

Overview

C-net is a programming language that is founded on the C programming language. The basic

syntax of C-net (declarations, loops, conditionals etc.) will be very similar to C as can be seen in

the example code section. C-net is an imperative, specifically a procedural, language. Similar to

C, C-net will be statically typed. In addition to these features, C-net aims to incorporate the

following elements

1. Easier network/file programming

C-net provides an abstract wrapper for network sockets and files as objects for reading and

writing along with built-in methods for performing common manipulations. In doing so, the

language simplifies I/O for succinct and clear code. The goal is to present files and sockets as

very similar things that can be written to and read from. To this end, the operations on File and

Socket objects will be similar as much as possible.

These two objects, File and Socket, will be the hallmarks of the language. They will provide a

simple interface for reading and writing data, and all buffering and memory management that is

related to the operations is handled internally.

If the user wants to read a line of text from a socket, for example, all the user has to specify is the

maximum number of characters they would like to read. The language then allocates the buffer,

reads from the network socket until the end of the line, gives the data to the user and deallocates

the buffer automatically.

The programming language will natively provide common operations such as reading and

writing lines of text, reading a certain number of bytes or transferring data from one IO object to

another.

2. Multithreaded socket listening

C-net will have a built-in function called new_thread that takes a listening socket and a

user-defined function. The built-in function will then create a new thread and call the

user-defined function every time a new connection is made. This will allow servers to handle

multiple clients at a time.

3. Dynamic memory allocation

 C-net provides heap memory allocation in the same way as Java: storing the data on the heap

and the reference on the stack. Except for these references and primitive types, all user data will

be stored on the heap. The dereference (*) operator will not be needed and any operation on a

variable will automatically dereference before accessing the data. For flexible memory

allocation, the user will be able to declare structs in the same fashion as in C.

Memory allocation will be done using the “new” keyword and users will have to explicitly

“delete” any variables allocated with “new” since the language does not have automatic garbage

collection for user-defined types. The only exception to this is the String type (see below). Since

the language has strong type-checking, any memory allocated will be according to the size of the

data type that is being declared.

4. Automatically managed String type

C-net will provide a built-in String type, which is immutable and destroyed any time it goes out

of scope or a reference to it is lost. For example, if the user sets a String variable to something

else, the old String is immediately deleted. Assignment of one string to another will perform a

deep copy so that the new variable has its own underlying character array. Like the majority of

data types, Strings will be stored on the heap.

5. Functions as arguments

To allow the user to transform data as it is read from a file or a network socket, the language will

allow passing functions as arguments to other functions (similar to function pointers in C).

However, since there is no casting and the language will be strongly typed, the function being

passed will have to match the exact signature that the receiving function is expecting.

Data Types

Keywords

Data Type Description Size

char Primitive Character type 1 byte

int Primitive numeric type 4 byte

float Primitive numeric type 4 byte

String String literal type Size of the struct which
contains the char pointer
and other metadata (e.g.

length)

Socket Wrapper for network IO Dynamic

File Wrapper for file IO Dynamic

type[] Array of one of the above
types

Dynamic

Keyword Description

for Control flow iterative loop

while Iterative loop with condition

if/ else Basic control flow condition

return Return expression

new Allocates memory on the heap

delete Deallocate memory that has been
allocated

continue Skip over to next iteration of the
loop

break Break out of the loop

Operators

Operator Data types that can use
operator

Description of operation

+ - * / int, float Carries out arithmetic
operations between operands

 * String Similar to Python, * allows
for replication of string.

= Used as needed Assignment operator

==, != char, int, float, string Equality operator (deep
equality for string)

&&, || Used as needed Logical operations (and, or)

[] Array, string Index operator

// Used as needed Single line comment

/* */ Used as needed Multi-line comment

Sample code

Example 1: GCD algorithm

int gcd(int a,int b){

 while(a!=b) {
 if(a>b)
 a -= b;
 else

 b -= a;
 }

 return a;
}

Example 2: A web server which can handle multiple clients at the same time: The protocol is that

the client sends the name of the file it wants and the server replies with the file.

void handle_listen(Socket socket)
{

 String filename = socket.read_line(100);

 File requested_file = fopen(READ, filename);

 socket.writeall(requested_file.readall());

 exit(1);
}
int main()

{
 Socket listener = nopen(LISTEN, 80, TCP);
 Socket connected_sock;

 for (;;) {
 connected_sock = listener.wait_until_connection();

//blocks here
 new_thread(handle_listen, connected_sock);
 }

}

Example 3: copy one file into another while capitalizing it

int main()
{
 String source = "test.txt";
 String destination = "test_copy.txt";

 File sourcef = fopen(READ, source);
 File destf = fopen(WRITE, destination);

 transform_and_copy(sourcef, destf, transformation_function);

 return 0;
}

int transform_and_copy(
 File sourcef,
 File destf,
 String transformation_func(String s))
{

 String tmp = sourcef.read_line(100);

 while(tmp.length() > 0)
 {
 destf.write(transformation_func(tmp));
 tmp = sourcef.read_line(100);
 }

}

String transformation_function(String s)
{

 return s.upper();
}

Example 4: Simple chat server (equivalent C-program (server_old.c))

int main(String[] args){
 if(args.length() < 2) {
 stderr.print_line("No port provided");
 exit(1);
 }

 portno = atoi(args[1]);
 Socket listener = fopen(LISTEN, portno, TCP);
 Socket connected_sock = listener.wait_until_connection(); // blocks here

 if (connected_sock.ERR > 0)
 error("error accepting new connection");

 while(1) {
 String message = connected_sock.read_line(255);
 if (message.length() == 0)
 stderr.print_line("Error reading from client");

 stdout.print("Client: ");
 stdout.print_line(message);

 if (message == "Bye")
 break;

 stdout.print_line("Server: ");
 message = stdin.read_line(255);

 connected_sock.write(message);

 if (connected_sock.ERR != 0)
 error("Error writing to server\n")
 }

 connected_sock.close();
 listener.close();
 return 0;
}

https://gist.github.com/Bruk3/9cc09523b2f6dc14b520e06ec955ef86

Example 5: Memory allocation and struct declaration

struct person {
String name;
int age;

};

int main(String[] args)
{

struct person p1 = new struct person;
p1.name = "Joe";
p1.age = 40;

stdout.print_line("What is your name: ")
p1.name = stdin.read_line(); //the old String is destroyed here

stdout.print_line("How old are you?");
p1.age = atoi(stdin.read_line());

stdout.print_line("Print to file?");
if(stdin.read_line() == "yes")
{

 File f = fopen(WRITE, p1.name);
 f.write("Name: " + p1.name + "\n\n" + "age: " + p1.age);

}

delete p1;

return 0;

}

