
AllHandsOnDeck:
A Universal Card Game Language

Caitlyn Chen
Language Guru

ckc2143

Tiffeny Chen
System Architect

tc2963

Jang Hun Choi
System Architect

jc5112

Mara Dimofte
Manager
md3713

Christi Kim
Tester

cwk2109

1 Introduction

Card games come in many different forms: games based off the standard 52-card deck such as War or
Blackjack, and games relying on unique decks such as Apples to Apples, UNO, SET, etc. We drew
inspiration from past proposals, which shared similar motivations of building out languages aimed to
support card game development. We found that there was a shortcoming in how past languages focused
on supporting standard 52-card deck based games. And though existing card game languages might be
able to represent standard 52-card games reasonably, they fail to generalize to the full breadth of card
games out there. Not only does our language allow the user to create any turn-based card game, but it
also supports general-purpose programming. The goal of our object-oriented, Python, Ruby, and C++-
inspired language is to enable programmers to easily code the gameplay and functionality of a turn-based
card game with an emphasis on code readability and modularity.

2 Syntax and Features

2.1 Data Types

Primitive Data Type Description
int integers are positive or negative whole numbers without decimal points

float floats represent real numbers written with a decimal point
String strings are sequences of characters that handle textual data

f-String formatted string literals using the syntax f’{expression}’
Boolean boolean variables are defined by the True and False keywords

Object Types Description
Object Any non-primitive that has arbitrary mutable and immutable attributes
Actor Object that can do ACTIONs that mutate the attributes of more than just the object itself
Range A set of values with a beginning and an end

Collection A virtual class representing an iterable container called Collection
Series Iterable Collection with a front (leftmost element) and a back (rightmost element)
Stack Iterable Collection with a top and a bottom

2.2 Operators

Operator Description
+,-,*,/,%,**,// arithmetic operators

=,==, <, >, <=, >= comparison operators
and, or, not, &, |, !, logical operators

is, is not identity operators
in, not in membership operators

2.3 Keywords
The following are reserved keywords in AllHandsOnDeck:

bool, float, int, True, False, None, string, const, not, let, be, do, if, elif,
else, for, in, range, while, break, continue, times, return, when, with, new

2.4 Control Flow
The following keywords are reserved for control flow: if...elif...else, while, for...in: works
mostly like in Python, with inspiration from Ruby.

2.4.1 For Loops
A for loop is used to iterate over a sequence (like a Collection, a Range, or a string). With a for loop,
we can execute a set of statements, once for each item in a given sequence.

1 for card in deck:
2 print f'({card.type}, {card.color})'

For loops using the times keyword:

1 for 3 times:
2 do INIT

Ranges are useful when a programmer wants to create a deck with type taken from a sequential set of
values (can be numerical, lexicographical, etc.) without having to enumerate out the entire sequence
themselves.

Ranges may be constructed using the s..e and s...e literals, where the former runs from the begin-
ning of the interval to the end inclusively and the latter runs through the interval excluding the end value.

For loops over a Range:

1 for val in 1..9:
2 card.type = val
3

4 for num in 0...players.size():
5 players[num].turn = num

Nested for loops:

1 deck = new Deck
2 for type in [0] + 2 * (1..9 + ['Skip', 'Reverse', 'Draw 2']):
3 for color in 'RYGB':
4 deck do PUSH_BOTTOM(new Card(type, color, faceup: False))

For loops can also be rewritten as list comprehensions:

For example, the above nested loop can be rewritten as the following list comprehension:

1 deck = new Deck(
2 new Card(type, color, faceup: False)

3 for type in [0] + 2 *
4 (1..9 + ['Skip', 'Reverse', 'Draw 2'])
5 for color in 'RYGB'
6)

2.5 Comments
For single-line comments, the characters // are inserted at the beginning of the line. The compiler ignores
all content between // and a new line. For multi-line comments, the characters /* and */ are used to
surround the text to be commented out. The compiler ignores all content between /* and */.

1 // This is a comment
2

3 /*
4 This is how you can do
5 a multi-line
6 comment
7 */
8

9 /* You can also just do one line */
10

11 /*
12 hand = [a, b, c] // you can also do a single line comment within a multi-line comment
13 deck = [d, e, f, g]
14

15 hand.push_front(deck.pop_bottom(3)) // deck.bottom(3) gives [g, f, e]
16

17 hand = [e, f, g, a, b, c]
18 deck = [d]
19 */

2.6 Functions
Functions are denoted as ACTIONs in the AllHandsOnDeck language. What is of note is the difference
between helper functions, which do not mutate state, and ACTIONs, which by definition mutate state.
Thus, a function call like <Actor> do ACTION or <Object> do ACTION is distinct from a call like
<Object>.helper_function().

AllHandsOnDeck encourages program modularity and code reuse through the way that main is
intended to be a high-level description of the game being programmed. By requiring programmers of
our language to wrap all state changes in an ACTION, main has to call those ACTIONs instead of defining
them. Thus, main is a readable representation of what the gameplay entails for any game programmed
using this language.

Functions can be defined as follows:

In the case of a general ACTION that is tied to the entire game and not to a specific entity, then
the function is defined as when do ACTION, without a specified entity. For example, any initialization of
the game setup may be done in such a function like INIT. See below for an example.

1 main:
2 do INIT
3 for 10 times:

4 do ROUND_INIT
5 // do rest of game
6

7 when do INIT:
8 players = [Player() for 2 times]
9 deck = Deck(

10 Card(rank, suit, faceup: False)
11 for rank in ['A'] + 2..10 + ['J','Q','K']
12 for suit in 'CDHS'
13).shuffled()
14

15 when do ROUND_INIT:
16 for player in players:
17 deck do PUSH_TOP(player.hand do CLEAR)
18

19 deck do SHUFFLE
20

21 while not deck.empty():
22 players[0].hand do PUSH_BACK(deck do POP_TOP)
23 players[1].hand do PUSH_BACK(deck do POP_TOP)

When an ACTION is tied to a specific Actor or Object, then the function signature should specify the
entity (or the specific class of an entity) it is attached to.

Function definition in the case of an ACTION that is tied to a specific entity:

1 timer = Timer(100ms)
2 timer do START
3 when timer do DONE:
4 print 'ping'
5 timer do RESTART

Function definition in the case of an ACTION that is tied to the specific class of an entity:

1 when Player player do BET(amount: int):
2 player.chips -= amount
3 player.bet += amount
4 betting_pot += amount

In the above example, the function BET describes the outcome of any Player performing the BET action.

2.7 Standard Library
The Collection object and the special Collection objects Stack and Series are built into the stan-
dard library. Both Stacks and Series are deques. A Stack can be thought of as a vertical list
where the top element is index 0 and can be used to represent a deck of cards. The built-in meth-
ods for a Stack include PUSH_TOP(elements...), PUSH_BOTTOM(elements...), POP_TOP(num =
1), and POP_BOTTOM(num = 1). A Series can be thought of as a horizontal list where the left-
most element is index 0 and a common usage is player’s hand. The build-in methods for a Se-
ries include PUSH_FRONT(elements...), PUSH_BACK(elements...), POP_FRONT(num = 1), and
POP_BACK(num = 1).

2.7.1 Built-in functions
• print ” prints the specified object to the screen after first converting it to a string

• input() asks the user for input

• <Collection> do SHUFFLE shuffles elements inside Collection

• <Collection>.shuffled() returns a copy of the shuffled Collection

• <Collection> do CLEAR empties the contents of the Collection and returns a copy of the Collec-
tion

• <Collection>.copy() returns a copy of the Collection

• <Collection>.empty() returns a boolean True or False of whether the Collection is empty

• <Collection>.size() returns the number of elements in the Collection

• <Stack> do PUSH_TOP(elements...): push 1 or more elements onto the top of a Stack

• <Stack> do PUSH_BOTTOM(elements...): push 1 or more elements to the bottom of a Stack

• <Stack> do POP_TOP(num = 1): pop 1 or more elements one at a time from the top of a Stack

• <Stack> do POP_BOTTOM(num = 1): pop 1 or more elements one at a time from the bottom of a
Stack

• <Series> do PUSH_FRONT(elements...): push 1 or more elements to the front of a Series

• <Series> do PUSH_BACK(elements...): push 1 or more elements to the back of a Series

• <Series> do POP_FRONT(num = 1): pop 1 or more elements one at a time from the front of a
Series

• <Series> do POP_BACK(num = 1): pop 1 or more elements one at a time from the back of a
Series

2.8 Object-Oriented Programming
AllHandsOnDeck includes certain predefined base classes such as Object, Stack, Series, and Actor.
Programmers are able to extend subclasses from those classes, with or without parameters. When
instantiating a new object, the keyword new is used.

An Object entity can be defined as follows:

1 let Square(side) be Object with:
2 side: side
3 area(): side * side

Classes cannot have attribute-changing functions though. Therefore, the following would be invalid:

1 let Square(side) be Object with:
2 side: side
3 area(): side * side
4 modify_side(new_side):
5 side = new_side

In order to modify an attribute, the programmer must define an ACTION function outside of the class. In
our above example, this can be done as follows:

1 when Square square do MODIFY_SIDE(new_side):
2 square.side = new_side

An Actor entity can be defined as follows:

1 let Scissor be Actor with:
2 int uses: 0
3

4 when Scissor scissor do CUT(target: Square):
5 target do MODIFY_SIDE(target.side / 2)
6 scissor.uses += 1

A Stack entity can be defined as follows:

1 let Deck be Stack(Card)

A Series entity can be defined as follows:

1 let Hand(owner: Player) be Series(Card) with:
2 owner: owner
3 uno(): size() == 1
4 winner(): empty()

An object is instantiated as follows:

1 empty_deck = new Deck
2 deck = new Deck(
3 new Card(1),
4 new Card(2),
5 new Card(3)
6)

3 Sample Program: UNO

1 main:
2 do INIT(4)
3

4 do FIRST_PLAY
5

6 while not player_won(): //define later
7 if move_available():
8 current_player do INPUT_PLAY_OR_DRAW //define later
9 else:

10 current_player do DRAW
11

12 do PRINT_WINNER
13

14 let Card(type, color, faceup) be Object with:
15 const type: type
16 const color: color
17 faceup: bool(faceup)
18

19 when Card card do FLIP:
20 card.faceup = not card.faceup
21

22 when Collection(Card) cards do FLIP:
23 for card in cards:
24 card do FLIP
25

26 let Deck be Stack(Card)
27

28 let Hand be Series(Card)
29

30 let Player(name) be Actor with:
31 const name: name
32 hand: new Hand()
33 uno(): hand.size() == 1
34 winner(): hand.empty()
35

36 when do FIRST_PLAY:
37 deck.top() do FLIP
38 discard.push_top(deck.pop_top())
39 do PROCESS_TOP_CARD
40

41 when Player player do PLAY(index):
42 if not match(player.hand[index], discard.top()):
43 return
44 discard.push_top(player.hand.pop(index))
45 do PROCESS_TOP_CARD
46

47 when Player player do DRAW:
48 deck.top() do FLIP
49 player.hand.push_back(deck.pop_top())
50

51 if match(player.hand.back(), discard.top()):
52 discard.push_top(player.hand.pop_back())
53 do PROCESS_TOP_CARD
54

55 when do PROCESS_TOP_CARD:
56 if discard.top().type == 'Reverse':
57 do REVERSE
58 do NEXT_PLAYER
59 else:
60 do NEXT_PLAYER
61

62 if discard.top().type == 'Skip':
63 do NEXT_PLAYER
64 elif discard.top().type == 'Draw 2':
65 deck.top(2) do FLIP
66 current_player.hand.push_back(deck.pop_top(2))
67 do NEXT_PLAYER
68

69 match(card1: Card, card2: Card):
70 return card1.type == card2.type or card1.color == card2.color
71

72 when do REVERSE:
73 play_dir *= -1
74

75 when do NEXT_PLAYER:
76 if current_player is None:
77 current_player_i = random(range(players.size()))
78 current_player = players[current_player_i]
79 else:
80 current_player_i = (current_player_i + play_dir) % players.size()
81 current_player = players[current_player_i]
82

83 when Player player do INPUT_PLAY_OR_DRAW:
84 print 'Would you like to play or draw?'
85 action = input()
86 if action == 'play':
87 print 'Which card?'
88 int index = input()
89 player do PLAY(index)
90 elif action == 'draw':
91 player do DRAW
92

93 when do INIT(n_players):
94 players = [new Player(f'Player {i + 1}') for i in range(n_players)]
95

96 deck = new Deck(
97 new Card(type, color, faceup: False)
98 for type in [0] + 2 *
99 (1..9 + ['Skip', 'Reverse', 'Draw 2'])

100 for color in 'RYGB'
101)
102

103 deck do SHUFFLE
104

105 for player in players:
106 player.hand do PUSH_BACK(deck do POP_TOP(7))
107

108 discard = new Deck
109

110 current_player_i = None
111 current_player = None
112 play_dir = 1

