

YAGL
Yet Another Graph Language

Language Reference Manual

Adam Carpentieri | AC4409
Jack Hurley | JTH2165
James Mastran | JAM2454
Shvetank Prakash | SP3816

1 Introduction 5

2 Lexical Conventions 5

2.1 Identifiers 5

2.2 Keywords 5

2.3 Constants 6

2.3.0.1 Integer Constants 6

2.3.0.2 Character Constants 6

2.3.0.3 Floating Point Constants 7

2.3.0.4 String Constants 7

2.3.0.5 Boolean Constants 7

2.4 Operators 7

2.5 Separators 8

2.6 Whitespace 8

2.7 Comments 8

3 Data Types 8

3.1 Primitive 8

3.1.0.1 int 8

3.1.0.2 char 9

3.1.0.3 bool 9

3.1.0.4 float 9

3.1.0.5 void 9

3.1.0.6 Array 9

3.2 Derived 9

3.2.0.1 Node 9

3.2.0.2 Edge 9

3.2.0.3 Graph 10

3.2.0.4 String 10

4 Expressions and Operators 10

4.1 Unary 10

4.1.0.1 Accessor: variable.variable 10

4.1.0.2 Negation: !bool 10

4.1.0.3 Negation: -expression 10

4.1.0.4 Array accessor: [] 11

4.1.0.5 expressions not supported 11

4.2 Binary 11

4.2.0.1 Multiplication: expression * expression 11

4.2.0.2 Division: expression / expression 11

4.2.0.3 Addition: expression + expression 11

4.2.0.4 Subtraction: expression - expression 11

4.2.0.5 Equality: expression == expression 12

4.2.0.6 Graph special operator: expression : expression 12

4.2.0.7 Less-than: expression < expression 12

4.2.0.8 Greater-than: expression > expression 12

4.2.0.9 Arrow-operator: expression ->expression expression 12

4.2.0.10 Question-Mark-operator: expression ? expression 12

4.2.0.11 Assignment: expression = expression 13

4.2.0.12 OR: bool || bool 13

4.2.0.13 AND: bool && bool 13

4.2.0.14 expressions not supported 13

4.2.0.15 boolean short circuiting 13

4.3 Operators Precedence 13

5 Functions 14

5.1 Functions 14

5.2 Calling a function 14

6 Statements 15

6.1 Declarations 15

6.1.0.1 Primitive Data Types 15

6.1.0.2 Arrays 15

6.1.0.3 Nodes 15

6.1.0.4 Edges 15

6.1.0.5 Graph 15

6.1.0.6 String 15

6.2 Statements 15

6.2.0.1 Expression Statement 15

6.2.0.2 The BFS Control Flow Statement 15

6.2.0.3 Add Node to Graph 16

6.2.0.4 Add Nodes to Graph 16

6.2.0.5 Add Edge to Graph 17

6.2.0.6 Get an Edge from a Graph 17

6.2.0.7 Conditional Statements 17

6.3 Return Statement 17

6.4 null Statement 17

7 Control Flow and Scope 17

7.1 if/else statement 17

7.2 while loop 18

7.3 bfs loop 18

7.4 scope 18

8 Library Functions 19

8.1 Dijkstra: Shortest Path 19

8.2 Reverse Edges 19

8.3 Depth First Search 19

8.4 Find All 19

9 References 20

10 Example 20

10.1 Hello World 20

10.2 Cities and Shortest Paths 21

1 Introduction

YAGL may be just that, Yet Another Graph Language, but it is unlike any other— hopefully. The

pervasiveness of graphs in computer science makes them a great candidate to be added to the

list of classical types that are widely used in other languages. This language aims to make

implementing graphs and their algorithms much simpler and easier! While we are creating our

own language syntax and design, we do plan on adopting some C’s syntax & features that we

appreciate most.

Graphs are fundamental in data structures and algorithms. They are ubiquitous and can be used

to represent almost anything: social media connections, roads that connect cities, flights between

cities, relationships or friendships, and many other mathematical & logical problems. Our

language aims to simplify the use of graphs in computation by nicely wrapping many of the

operations used in well known algorithms into a neat & compact syntax. Using these commonly

used graph operations & operators as our building blocks, we have also built a Standard Library

that has easily implemented many of the widely used graph algorithms.

2 Lexical Conventions

In YAGL, identifiers, keywords, constants, operators, and separators are all considered tokens.

The lexeme associated with each token is composed of characters from the ASCII character set.

Tokens must be separated using whitespace, comments, or any other kind of separator token.

2.1 Identifiers

Identifiers are used for naming and must begin with an alphabetical letter. This first character can

then be followed by any sequence of digits, letters, and underscores. Names can be of any

length but must be unique. Uppercase and lowercase letters are distinct. The regular expression

for identifiers is:

['a'-'z' 'A'-'Z']['a'-'z' 'A'-'Z' '0'-'9' '_']*

2.2 Keywords

The following words are reserved in YAGL for programming constructs, defining types, and

special constants and may not be used in any other context such as naming:

while int

if char

else bool

Each lexeme associated with each of these tokens above is the keyword’s respective spelling.

2.3 Constants

There are 5 different types constants used to represent literals:

2.3.0.1 Integer Constants

Integer constants are composed of any sequence of digits (0-9) and an optional hyphen (-) for

the sign of the integer to represent a literal between -2,147,483,648 to 2,147,483,647. All integer

constants are interpreted as base 10 numbers. The regular expression for integer constants is:

['0' - '9']+

2.3.0.2 Character Constants

Character constants are represented using single quotes around a single character from the

ASCII character set encoding. Sometimes two characters are needed in special cases to

represent the character. In these cases the first character is a backslash which is also called the

escape character in this context:

‘\’’ : single quote

‘\n’ : new line

‘\r’ : carriage return

‘\t’ : tab

‘\b’ : backspace

‘\\’ : backslash

The regular expression for these escape characters is:

"'" ('\\' ['b' 't' 'r' 'n']) "'"

bfs float

return Graph

true String

false Edge

void Node

 NULL

The regular expression for all other ASCII characters is:

"'" [' ' - '~'] "'"

2.3.0.3 Floating Point Constants

Floating point constants are composed of an integer sequence followed by a decimal point and

then a fractional sequence. The integer sequence can contain an optional hyphen to show the

sign followed by any sequence of digits to represent an integer literal between 1.2E-38 to

3.4E+38. The decimal point is a simple period (.) . The fractional portion can be any sequence of

digits to represent six decimal points of precision. The first two components (integer portion,

decimal point) are required for the constant to be interpreted as a floating point. The regular

expression for floating point constants is:

['0' - '9']+ '.' ['0' - '9']* (['e' 'E'] ['+' '-']? ['0' - '9'])?

2.3.0.4 String Constants

String constants are represented using double quotes “” around a string literal, which is simply a

sequence of ASCII characters (including escape chars). The regular expression for string

constants is:

'"' (ascii* escapeChars*)+ '"'

 where the regular expressions for ​ascii ​and ​escapeChars ​ are defined in 2.3.0.2 above.

2.3.0.5 Boolean Constants

There are only two kinds of boolean constants and these literals are reserved as keywords in the

language: ​true and false ​. The lexeme associated with each of these two tokens is the

keyword’s respective spelling.

2.4 Operators

The following characters are reserved as operators:

Each one of these is considered a separate token with the exception of ​- ​followed by an integer

or floating point constant.

+ - /

* = !

< > &&

|| ==

2.5 Separators

There are 9 separator tokens in YAGL:

These are used in the language to separate code in various ways and each have a different use

case outlined later in the LRM. A left parenthesis, square bracket, or curly brace needs to be

followed eventually by a respective right closing character.

2.6 Whitespace

All white space (spaces, tabs, new lines) are ignored and not considered tokens. They are simply

used to separate other tokens.

2.7 Comments

All comments begin with a ​/* ​and end with ​*/ ​. Comments are ignored and not considered

tokens ​but can be used to separate tokens​.

3 Data Types

Data types are split into two different categories: primitive and derived. Primitives are the base

data types and consist of ​int ​, ​char ​, ​bool ​, ​float ​ and ​void ​. Derived data types are built from

primitive data types. These types include ​Node ​, ​Edge ​, ​Graph ​, ​Array ​ and ​String ​. ​Note that

bitwise representations of data types are not exposed to the user.

3.1 Primitive

3.1.0.1 int

Used to store whole number values with a storage size of 32 bits. Integer types are stored in 2’s

complement and so the range is from ​-2,147,483,648 to 2,147,483,647​. Characters (declared, and

hereinafter called, char) are chosen from the ASCII set; they occupy the rightmost seven bits of

an 8-bit byte.

()

[]

{ }

.

;

,

3.1.0.2 char

Stores character values with a size of 8 bits. Character types are 1 byte unsigned integers and so

their value range is from 0 to 255.

3.1.0.3 bool

Either stores the value ​true ​ or ​false ​.

3.1.0.4 float

Stores floating point numbers (i.e. fractions/decimals). Floating types have a storage size of 32

bits and are formatted in IEEE 754 (1-bit for the sign, 8-bits for the exponent, 23-bits for the value).

The value range is from 1.2E-38 to 3.4E+38 and has 6 decimal places of precision.

3.1.0.5 void

Specifies no value is available. It is used for functions to return nothing, functions to not take

arguments and used to point to an address of an object but not its type.

3.1.0.6 Array

A contiguous chunk of memory storing multiple instances of the same type. All arrays are of fixed

length and one-dimensional.

3.2 Derived

3.2.0.1 Node

Contains one or more attributes of any type (string, int, bool, etc.). Similar to a dictionary in

Python.

Adding a Node to the Graph is shown in the example section.

3.2.0.2 Edge

Connects two nodes and contains a reference to its source and destination nodes. It will hold an

int which can correspond to the edge’s weight. All edges are directed, but you can “create” a

bidirectional edge by having two edges connecting the same nodes but in opposite directions.

The information stored in an Edge is the source node, destination node, and some associated

descriptor which is of type int. All these are accessible. For example, to access the destination

node, source node, or attribute (weight) of an Edge E, it is simply E.dest, E.src, or E.attr,

respectively;

Adding an Edge to the Graph is shown in the example section.

3.2.0.3 Graph

A Graph stores two sets of arrays: an array for the nodes contained within the Graph and an array

of Edges for relationships between the nodes. To keep track of the size of the arrays, two ints are

stored as well. These arrays are pointers.

Graphs are immutable thus when a new Graph is created it does not contain any nodes nor any

edges and therefore the edges and nodes arrays point to null. When a node is added into a

Graph, the graph mallocs enough space for the number of previous nodes plus 1. The old set of

nodes are copied into the new allocated memory in addition to the new node. When an edge is

added into a Graph, the graph mallocs enough space for the number of previous edges plus

room for another one. The old array of edges are copied into the new allocated memory in

addition to the new node. This new chunk of memory is stored in a new graph.

One can access the array of ​edges ​ or ​nodes ​ of a graph. For example, to access Graph G’s array

of nodes, it is simply ​G.nodes;

Adding nodes and edges to a Graph is shown in the example section.

3.2.0.4 String

An array of characters terminated with a null character. String types contain a pointer to the array

with a size of 8 bytes.

4 Expressions and Operators

4.1 Unary

The unary operators are !, -

4.1.0.1 Accessor: variable.variable

The . operator is used on a variable of a specific type and accesses its internal data/variables.

4.1.0.2 Negation: !bool

The ! operator placed immediately before an expression is the negation operator. It works on

bool ​types. If the ​bool ​is true, then the negation of the ​bool ​becomes false. If the ​bool ​is

false, then the negation of the ​bool ​ becomes true.

4.1.0.3 Negation: -expression

The - operator placed immediately before an expression is the negative operator. The result is

the negative of the expression and works on ​int ​and ​float ​types.

4.1.0.4 Array accessor: []

The [index] operator is used after an array variable to access and dereference the contents of the

memory location held in the index number (0 based) of the array.

4.1.0.5 expressions not supported

The ++ (increment) and -- (decrement) unary operators are not supported in our language since

these are equivalent to ​expression = expression + 1 ​ or ​expression = expression
- 1, ​ respectively.

Bitwise operators are not supported at this time.

4.2 Binary

The binary operators are +, -, *, /, ==, <, >, =, &&, and ||.

4.2.0.1 Multiplication: expression * expression

The * operator with two expressions indicates multiplication. Both expressions must be of the

same type. Therefore, this operator works on ​int * int ​,​ float * float ​,​ ​or​ char *
char ​expressions. No other combinations are allowed. The result is another expression of the

same type as the expressions used with this operator. This operator is left evaluated (grouped

left-to-right).

4.2.0.2 Division: expression / expression

The / operator with two expressions indicates division. Both expressions must be of the same

type. Therefore, this operator works on ​int / int ​,​ float / float ​,​ ​or​ char / char
expressions. No other combinations are allowed. The result is another expression of the same

type as the expressions used with this operator. This operator is left evaluated (grouped

left-to-right).

4.2.0.3 Addition: expression + expression

The + operator with two expressions indicates addition. Both expressions must be of the same

type. Therefore, this operator works on ​int + int ​,​ float + float ​,​ ​or​ char + char
expressions. No other combinations are allowed. The result is another expression of the same

type as the expressions used with this operator. This operator is left evaluated (grouped

left-to-right).

4.2.0.4 Subtraction: expression - expression

The - operator with two expressions indicates subtraction. Both expressions must be of the same

type. Therefore, this operator works on ​int - int ​,​ float - float ​,​ ​or​ char - char

expressions. No other combinations are allowed. The result is another expression of the same

type as the expressions used with this operator. This operator is left evaluated (grouped

left-to-right).

4.2.0.5 Equality: expression == expression

The == operator is the equal-to operation. It determines whether two expressions are equivalent

of the form expression == expression and returns a bool type. One aspect to note is the lower

precedence; for example, ​a>b==c>d ​ is 1 if a > b and c > d or a < b and c < d (thus both have the

same truth value). For comparing Nodes, Edges, or Graphs, it compares memory location. This

operator is left-to-right evaluated.

4.2.0.6 Graph special operator: expression : expression

This operator is to define an expression to affect the graph on the left-hand side. The first

expression must be a Graph and the second must be a valid operation on the Graph (such as the

arrow operator or question mark operator). This operator is left-to-right evaluated.

4.2.0.7 Less-than: expression < expression

The < operator is the less-than operation. It determines whether the left side of the operator is

less-than the right side and if so it yields true; otherwise, false. Both expressions must be of the

same type. Does not apply to the bool type. This operator is left evaluated (grouped left-to-right).

4.2.0.8 Greater-than: expression > expression

The > operator is the greater-than operation. It determines whether the left side of the operator is

greater-than the right side and if so it yields true; otherwise, false. Both expressions must be of

the same type. Does not apply to the bool type. This operator is left evaluated (grouped

left-to-right).

4.2.0.9 Arrow-operator: expression ->expression expression

The -> operator is the arrow operation. It is used to create an edge from the left-hand side

directed towards the right-hand side expression. The expression in the middle is a literal (integer)

number and is optional (defaults to 1). The middle expression must be an integer and the other

two expressions must be a Node. This operator is left evaluated (grouped left-to-right).

4.2.0.10 Question-Mark-operator: expression ? expression

The ? operator is the question mark operation. Both expressions must be of the Node type. This

operator follows the Graph-operator (:) and retrieves the attribute of the edge (an integer)

between the first expression and the second expression (which are both nodes) in the graph. This

operator is left evaluated (grouped left-to-right).

4.2.0.11 Assignment: expression = expression

The assignment operator groups right-to left, that is the right side of the binary operator is

assigned to the left side. The assignment operator returns a value that is equal to the right side of

the assignment and is of the same type. Both expressions must be of the same type, no other

combinations are allowed.

4.2.0.12 OR: bool || bool

The || operator yields true if either (or both) of the booleans are true; otherwise, it yields false.

This operator guarantees left-to-right evaluation.

4.2.0.13 AND: bool && bool

The && operator yields true if (and only if) both of the booleans are true; otherwise, it yields false.

This operator guarantees left-to-right evaluation.

4.2.0.14 expressions not supported

Greater than or equal and less than or equal comparators.

4.2.0.15 boolean short circuiting

Boolean expressions are ​not​ short circuited.

4.3 Operators Precedence

The precedence order is unary operators, multiplication and division, addition and subtraction,

comparators (<, >, ==), the and/or logical operators, and then lastly the assignment operator.

Parenthesis in logical evaluation or arithmetic can be used to override inherent precedence. For

example 2 + 3 * 4 should evaluate to 14, but (2+3) * 4 should evaluate to 20.

The overarching precedence is in order of the major sections above (i.e. unary operations receive

higher precedence over binary operations).

To summarize precedence (in order of increasing precedence):

Operator Name Symbol Associativity

Assignment = Right-to-Left Associativity

Or || Left-to-Right Associativity

And && Left-to-Right Associativity

5 Functions

5.1 Functions

Functions in our language will follow the syntax:

return_type function_name (type arg1, type arg2, …, type argN){

/* function body */

}

The​ ​return ​ ​statement is a mechanism for returning a value to the caller. Any expression can
follow return:

Return expression;

Our language does not support functions as pointers.

5.2 Calling a function

Once a function is defined, it may be called in any place inside another function. The syntax is

function_name(arg1, arg2, …, arg n);

Equal Graph-operator == : Left-to-Right Associativity

Less-than Greater-than < > Left-to-Right Associativity

Arrow-operator -> Left-to-Right Associativity

Plus Minus + - Left-to-Right Associativity

Times Divide * / Left-to-Right Associativity

Not ! Right-to-Left Associativity

QMark-operator ? Left-to-Right Associativity

Array-access-operator array[expr] Left-to-Right Associativity

Accessor-operator . Left-to-Right Associativity

6 Statements

6.1 Declarations

6.1.0.1 Primitive Data Types

To declare a primitive data type, the syntax is ​type var_name = expression of same
type;

6.1.0.2 Arrays

To declare an array, the syntax is ​type[num_of_elements] name;

6.1.0.3 Nodes

To declare a Node, the syntax is ​Node name = {type name1 = value1, ..., type
nameN = valueN};

6.1.0.4 Edges

An Edge is not declared directly. It is declared by adding an edge to a graph. Assume a Graph G

exists contain Nodes A, B and C, two edges from A to B (with weight 5) and B to C (with weight 7)

can be declared as:

G: A ->5 B ->7 C

6.1.0.5 Graph

To declare a Graph, the syntax is ​Graph name; ​which will create a graph type and store its

address in the variable ​name.

6.1.0.6 String

To declare a string, the syntax is ​String name = “contents of the string”;​ Since Strings

are fixed arrays, their length cannot be changed.

6.2 Statements

Statements are executed in their order written in the code.

6.2.0.1 Expression Statement

Any expression of the form ​expression; ​ is a statement.

6.2.0.2 The BFS Control Flow Statement

The BFS statement is of the form:

bfs(Graph G; Node n; int x) {

statement

}

Where n is the Node currently being iterated (originally, the start node) and x is the depth.

Therefore, if it was desired to get all the neighboring nodes of the starting node, one could code:

node = n; ​//initialize start_node to node n so node n is not touched

int x;

Node[10] nodes;

bfs(Graph G; node; x) {

if (x < 1) {

nodes.add(node)

}

}

6.2.0.3 Add Node to Graph

Node A = {int example : 5}

Graph G;

G = G + A;

6.2.0.4 Add Nodes to Graph

Node A = {int example : 5}

Node B = {int example : 5}

int nodes[2];

nodes[0] = A;

nodes[1] = B;

Graph G;

G = G + nodes;

6.2.0.5 Add Edge to Graph

Graph G;

G: h ->{5} e;

Note: Graphs are immutable, so this makes a copy of G and adds the edge and sets G to point to
the updated version.

6.2.0.6 Get an Edge from a Graph

Given a Graph G with an Edge that connects Node A and Node B:

Edge x = G: A ? B

6.2.0.7 Conditional Statements

The forms of conditional statements supported are:

if (expression) { statement }

if (expression) { statement } else { statement }

6.3 Return Statement

A function returns to its caller through the return statement which has the following forms:

return;

return (expression);

6.4 null Statement

The null statement is simply:

;

7 Control Flow and Scope

Programs are executed from top to bottom, but you are able to loop (while, BFS) or skip (if/else)

blocks of code based on a condition. Also, programs include variables that are accessible

depending on where they are declared.

7.1 if/else statement

An if/else statement takes a condition. If the condition is true, then the block of code inside the

curly braces that follows the “if” is executed. If it is false, the block of code is skipped and the

block of inside the curly braces following the “else” is executed. Users are given the option to

omit the “else”.

if { }

else { }

7.2 while loop

A while loop checks a condition and if it is true, then the block of code inside the curly braces is

executed. The program goes back to the top of the loop and checks the condition again. If it is

still true, the execution is repeated. This goes on until the condition is false and you break out of

the loop.

while(boolean expression) { }

7.3 bfs loop

The BFS loop is used to traverse the nodes in a graph. The loop is implemented using the

Breadth First Search algorithm and the user is able to control the how many neighbor levels that

are visited. For example, the first neighbor level of Node n would be the nodes that are

connected by only one edge to n.

bfs(Graph G; Node n; int x) {

statement

}

7.4 scope

Variables that are declared outside any curly braces are available to be used anywhere in the

program. Otherwise, variables are only accessible inside the curly braces. For example, if the

declaration takes place inside a function, then the variable isn’t available to other functions. This

is true for if/else statements, while loops and bfs loops.

8 Library Functions

Below are some of the kinds of functions we plan on implementing using our Graph primitive

operators to build the “Standard Graph Library” of our language. These functions are commonly

used in many graph problems.

8.1 Dijkstra: Shortest Path

Edge[] shortest_path(Graph G, Node A, Node B)

Returns the shortest path from A to B in G. If G’s attribute type is int, this uses Dijkstra’s algorithm.

If G’s attribute is not int or unweighted, all edges are of weight 1 and Dijkstra is equivalent to a

BFS search. Returns a Path (i.e. an Array of Edges).

8.2 Reverse Edges

Graph reverse_edges(Graph A)

Reverses all the edges in Graph A. Returns a graph.

8.3 Depth First Search

Graph depth_first_search(Graph G, Node A, Node B)

Returns a Graph that depicts the DFS traversal from A to B.

8.4 Find All

Node[] find_all(Graph G, Node src, int attribute)

Returns all neighboring nodes of the source node (Node src) in Graph G such that the edge from

src to any other neighbor has an attribute equal to attribute. Example implementation:

Nodes[] find_all (Graph G, Node src, ​int​ filter_attr) {
 Node[​1000​] neighbors​;
 Node[​on​] valids​;
 Node n = src​;
 ​int​ x​;
 ​int​ ​on​;
 ​int​ ​pos​ = ​0​;

 bfs(G​; n; x) {
 ​/*get edge between src and n*/

9 References

[1] Dennis M. Ritchie. C Reference Manual. ​https://www.bell-labs.com/usr/dmr/www/cman.pdf​.

[2] Edwards, Stephen. ”Programming Language and Translators.” ​MicroC​.

[3] Tutorials Point. ​https://www.tutorialspoint.com/cprogramming/c_data_types.htm​.

10 Example

10.1 Hello World

 Edge e = G.src ? n​;
if​ x < ​1​ && e.attr != filter_attr {

neighbors[​on​] = n​;
 ​on​ = ​on​ + ​1​;

}

 }

 ​while​ (​pos​ < ​on​) {
 valids[​pos​] = neighbors[​pos​]​;
 ​pos​ = ​pos​ + ​1​;
 }

 ​return​ valids​;
}

Node​ ​h​ = {char name = 'h'};
Node​ ​e​ = {char name = 'e'};
Node​ ​l​ = {char name = 'l'};
Node​ ​l2​ = {char name = 'l'};
Node​ ​o​ = {char name = 'o'};

Node​ ​space​ = {char name = ' '};

Node​ ​w​ = {char name = 'w'};
Node​ ​o2​ = {char name = 'o'};
Node​ ​r​ = {char name = 'r'};
Node​ ​l3​ = {char name = 'l'};
Node​ ​d​ = {char name = 'd'};

Graph HW;

https://www.bell-labs.com/usr/dmr/www/cman.pdf
http://www.cs.columbia.edu/~sedwards/classes/2021/4115-spring/index.html
https://www.tutorialspoint.com/cprogramming/c_data_types.htm

10.2 Cities and Shortest Paths

HW = HW + h + e + l + l2 + o + space + w + o2 + r + l3 + d;

HW: h -> e -> l -> l2 -> o -> space -> w -> o2 -> r -> l3 -> d;

Node​ ​cur_node​ = h;
int depth;

bfs(HW; cur_node; depth) {

printf(​"%C"​, cur_node.name);
}

printf(​"\n"​);

Node​ ​Pittsburgh​ = {int pop: ​302205​};
Node​ ​Philly​ = {int pop: ​1579000​};
Node​ ​New_York​ = {int pop: ​8336000​};

Graph cities;

Cities = Cities + Pittsburgh + Philly + New_York;

/* Add bidirectional edges between cities */

Cities: Pittsburgh ->​304​ Philly ->​304​ Pittsburgh ->​371​ New_York ->​371
Pittsburgh;

Cities: Philly ->​95​ New_York ->​95 ​Philly;

/* Get shortest path from Pittsburgh to New York */

Node​[] path​ = shortest_path(cities, Pittsburgh, New_York);

