
The XIRTAM Language Manual
Annie Wang (aw3168) - manager

Andrew Peter Yevsey Gorovoy (apg2165) - manager/architect (environment selection)
Shida Jing (sj2670) - tester

Bailey Nozomu Hwa (bnh2128) - language
Lior Attias (lra2135) - architect (compiler design)

1. Acknowledgement

We would like to acknowledge that this document is heavily borrowed from the C

language manual located here:

https://www.bell-labs.com/usr/dmr/www/cman.pdf

A large portion of this document is based off of snippets from the C language manual

with minimal changes.

2. Introduction

The XIRTAM language is an object-oriented C-style language for manipulating matrices.
Besides matrix declarations and operations, XIRTAM behaves analogously to C. The XIRTAM
language is a statically typed and compiled language focused on the manipulation of matrix (XIRTAM)
objects. The purpose of XIRTAM is to provide functionality akin to Python’s numpy matrix manipulation
module in addition to flexible matrix operations not possible in traditional languages.

3. Lexical Conventions

In XIRTAM, newlines, spaces, tabs, and comments as described below are ignored. If the
input stream has been parsed into tokens up to a given character, the next token is taken to
include the longest string of characters which could possibly constitute a token.

XIRTAM contains the following tokens:

3.1. Comments
The characters /* introduce a comment, which terminates with the characters */ .

https://www.bell-labs.com/usr/dmr/www/cman.pdf

3.2. Identifiers
A letter is defined to be one of the 26 English letters, either uppercase or lowercase. A
digit is defined to be one of 0 through 9. An identifier is a sequence of letters and digits,
with which the first character must be a letter. The underscore ‘‘_’’ counts as a letter.
Upper and lower case letters are considered different.

Identifiers are used as corollary labels for variables, functions, and Xirtam matrix objects.
The above definition of identifiers provides restrictions on valid identifiers.

3.3. Punctuators
Punctuators in XIRTAM have syntactic and semantic meaning to the compiler but do not,
of themselves, specify an operation that yields a value. Any of the following in it of
themselves are considered as punctuators.

! % ̂ & * () - + = { } | ~ [] \ ; ' : " < > ? , . / #

3.4. Keywords
The following keywords are reserved and cannot be used otherwise.

numeric
string

bool
Xirtam

if
else

else if
for

void
return

true

false
new

del
NULL

4. Basic Types

4.1. Strings
A string is a sequence of characters surrounded by double quotation marks " , declared

by the keyword string . Double quotation marks are not allowed to appear in a string.

4.2. Numeric

A numeric is a number, encompassing integers and floating point numbers. It could be
negative, 0, or positive. An operation on two numerics always returns another numeric.
An operation between a numeric and another type has different return types, depending

on the situation. All non-zero numerics are interpreted as the keyword true. 0 is

interpreted as the keyword false .

4.3. Boolean

A bool is either the keyword true or the keyword false .

4.4. Xirtam
A Xirtam is an array of arrays of type numeric . (see Section 7)

5. Xirtam Expressions

5.1 General Overview
1. For non-Xirtam object types (see section 7), common unary operators such as =, ==,

!=, +, -, *, /, ̂, <, >, =<, >=, &&,|| work the same way as they do in C.
More specifically:

a. The assignment operator = must have an identifier on the left, and anything on the
right. If the right side is a value, it assigns that value to the identifier. If the right

side is an expression, it evaluates the expression and assigns the value to the
identifier. The assignment is kept within scope.

b. ==, != evaluates both sides and returns a bool, analogous to C. == only evaluates

to 1 or true if both the left and right side evaluate to the same logical conclusion.

!= only evaluates to 1 or true if left and right side evaluate to opposite values.
c. +, -, *, / can be used on numerics to perform arithmetic operations.

d. ^ can be used to perform string concatenation

e. <, >, =<, >= can only be used on numerics, analogous to C.
f. &&, || are logical operators used on booleans. It cannot be used on any other

type. && only evaluates to 1 or true if both the left and right side evaluate to 1 or
true . || only evaluates to 1 or true if either the left and right side evaluate to 1

or true .

5.1 Operator Precedence
Operator precedence will take place in the following order (with the exception of assignment,
Xirtam objects which have their own methods for dealing with certain operations as outlined in
Section 7). Within the same level of precedency, they are evaluated from left to right, and top to
down. Parenthesis will override the precedence order, with expressions inside the parenthesis

evaluated first:
1. Function calls
2. Multiplication, division
3. Addition, Subtraction
4. Equal not-equal, and other boolean operations
5. Assignment

6. Declarations

6.1 Single Variables

Declarations are used to give identifiers certain values. To declare a variable, you must

specify the type, followed by the identifier, followed by = , followed by the value you wish to
assign. The following is the required basic pattern for declaring single variables ({} aren’t part of
the actual code):

{type} {identifier} = {value}

If a value is of type string then the value must be defined in between two double quotes as
stated previously.

{string} {identifier} = “{value}”

If a value is of type numeric then the value must be either a decimal or integer value

{numeric} {identifier} = {value}

If a value is of type bool then the value must be either true or false

{boolean} {identifier} = {true or false }

 For example,

string s = "Hello" ;

numeric n = 14;
bool b = true;

declares a string type identifier s with the value “Hello”, a numeric type identifier n with value

14, and a bool type identifier b set to true, respectively.

6.2 Functions

XIRTAM supports function declarations in a standard C style. The function declaration must adhere to the
following pattern:

<return_type> - is the type returned by the function
<function_name> - is the identifier used to reference the function declaration
<parameter list> - is the list of arguments passed to the function. Arguments must take the following form
{type} {identifier}

For example, to write a function that adds two integers in XIRTAM it looks like this:

< return_type > < function_name >(parameter list) {

body of the function

}

numeric foo (numeric a, numeric b){
return (a+b);

}

6.3 Function Calls

In order to call a function, the function name must be called followed by parentheses. If the
function declaration has arguments, then the necessary arguments identifiers must be passed into
the function reference. The following pattern must be followed:

For example,

A function that returns nothing has a declared type void .

function_name() /*if no arguments*/

function_name(parameter list) /*if function declaration takes arguments*/

foo(10 , 11);

7. Xirtam Matrix Objects

7.1 Overview
To declare a matrix object, you must use the Xirtam keyword, followed in order by the identifier,

assignment operator = , by the new matrix expression, and finally by the matrix. Matrices can be
expressed using an array of arrays format. The following is the required pattern for a matric
array:

The Xirtam matrix object can only take numeric type values. There is no multi-type matrix
object.The Xirtam matrix object is not dynamic. Once an object has been defined with a given
number of rows and columns, it can no longer be changed.
The following is then the required pattern for declaring a Xirtam matrix object:

There are also multiple other ways to declare a Xirtam matrix object

7.2 Xirtam Matrix Operations
XIRTAM matrices have built-in operations for the basic operations such as elementwise,
addition, multiplication. For equality, we return true for two matrices if (they are of the same size
and they are equal elementwise). XIRTAM also has functions specific to matrix-operations
beyond what is mentioned above:

7.2.1 Basic operations

{ { <num> , <num> , <num> }, { <num> , <num> , <num> }, { <num> , <num> , <num> }... }

Xirtam <identifier> = new matrix({ {< num >,< num >,< num >},

{< num >,< num >,< num >}, {< num >,< num >,< num >}... });

Xirtam matrix = new matrix({ { 1 , 2 , 3 }, { 4 , 5 , 6 }, { 7 , 8 , 9 } });
Xirtam matrix = new matrix(2 , 3 , 0); /* a 2 row, 3 column matrix containing

the int value 0. */

Xirtam matrix = new matrix(2 , 3); /* a 2 row, 3 column matrix containing

the int value 0 by default */
Xirtam matrix = new matrix("identity" , size); /* the identity matrix, size

is an integer, specifying the number of rows and columns. */

Xirtam matrix_addition = XIRTAM. add(matrix1, matrix2) ;

Xirtam matrix_multipication = XIRTAM. multiply(matrix1, matrix2) ;
Xirtam matrix_multipication = XIRTAM. scalar_multiply(matrix1, <numeric>) ;

7.2.2 Equality

7.2.3 Advanced Matrix Functions
Xirtam matrix_tensor = XIRTAM.tensor(matrix1, matrix2);
Xirtam matrix_transpose = XIRTAM.transpose(matrix1);
XIRTAM.determinant(matrix1);

7.2.4 Matrix Manipulations Functions

Example matrix m

bool matrix_equal = XIRTAM. equal (matrix1, matrix2);

Xirtam new_matrix = XIRTAM. remove (0 , matrix); /* replaces all 0 values in

the matrix with NULL, for example for JPEG compression */
Xirtam new_matrix = XIRTAM. remove (0 : 10 , matrix); /* replaces all Xirtam

new_matrix = values 0 - 10 in the matrix with NULL */

XIRTAM. remove ([0 , 10 , 11 , 12], matrix); /* replaces specific values the

matrix with NULL */
Xirtam new_matrix = XIRTAM.replace(0 , 10 , matrix); /* replaces all 0 values

with 10 */

Xirtam new_matrix = XIRTAM.replace(0 : 10 , 100 , matrix); /* replace all 0

through 10 (inclusive) values in the matrix with the value 100 */

numeric rows = XIRTAM.rows(m); /* returns 3 */
numeric cols = XIRTAM.cols(m); /* returns 3 */

Xirtam col_1 = XIRTAM.cols(m, 1); /* returns [1, 4, 7] */

Xirtam cols_1_2 = XIRTAM.cols(m, 1:2); /* returns columns 1 through 2

inclusive */
Xirtam rows_1 = XIRTAM.rows(m, 1); /* returns [1 2 3] */

Xirtam rows_2:3 = XIRTAM.rows(m, 2:3); /* returns a 2D array rows 2 through

3 inclusive */

Xirtam sub_matrix = XIRTAM.dims(m, 1:2, 2:3); /* returns a 2D array
representing {{2, 3}, {5, 6}} (the intersection of rows 1 - 2 and cols 2 -

3) */

Caveats
1. Xirtam does not support function overloading

8. Statements

8.1 Print Statement

8.2 Conditional Statements

Statements in the if block is evaluated only if the condition evaluates to true. Otherwise, the program
checks to see if an else or else if block exists. If not, proceed to the next statement. If yes, check if
conditions in the else if block(s) are ture. If so, the corresponding statement will be evaluated. If
neither the if and else if blocks evaluates to true, then the statements in the else block will be
evaluated.

8.3 For Statements

Init is executed first and only once. It allows you to declare and initialize any loop control variables. Then
the condition is evaluated. If it is true, the statements will be evaluated and afterwards, the increment will
happen. This loop is repeated until the condition evaluates to false .

print (string or variable);

if (condition1) {

 /* statement(s) */

}
else if (condition2) {

 /* statement(s) */

}

else if (condition3) {

 /* statement(s) */

}
else {

 /* statement(s) */

}

for (init ; condition; increment) {
 statement(s);

}

9. Sample Code

9.1 Fibonacci Sequence
Generating the nth number of a general Fibonacci Sequence. Parameters: a_1, a_0 are the starting values
of the sequence.

numeric nthFibo(numeric num n, numeric num a_1, numeric
num a_0){

Xirtam m = new matrix({ {1, 1}, {1, 0} });
Xirtam exp_m = new matrix("identity", 2);
for (numeric i = 0; i< n; i++){

exp_m = XIRTAM.multiply(new_m, m);
}
Xirtam init = new matrix({ {a_1}, {a_0} });
Xirtam result = XIRTAM.multiply(exp_m, init);
return result[1];

}

9.2 Markov Chain Stable State
Given a transition matrix of size n by n, and an initial state vector of size n by 1, we will find the stable
state, if there is one, of the transition process. We do this by keeping applying state transition to the state
vector, until there’s minimal changes in the states.

numeric find_max_markov(Xirtam m) {
max = -1;
for (numeric i = 0; i < XIRTAM.rows(m); i = i + 1) {

Xirtam row = XIRTAM.rows(m, i);
for (numeric j = 0; j < XIRTAM.cols(row); j = j +

1) {
if (XIRTAM.cols(row, j) > max) {

max = XIRTAM.cols(row, j);
}

}
}
return max

}
Xirtam find_stable_markov(Xirtam t, Xirtam v, numeric
thresh){

Xirtam cur = v;
numeric dif = find_max_markov(Xirtam.minus(cur, v))
while dif > thresh {

cur = XIRTAM.multiply(t, cur);
}
return cur;

}

9.3 Total Positivity
Check for total positivity. A minor of a matrix A is a square matrix which is formed by selecting a subset
of the rows of A, then selecting a subset of the columns of A, then taking the entries from the intersection.
A matrix is totally positive if all of its minors have positive determinant. If we have a 2 by n matrix A and
we want to check for total positivity, there are (n choose 2) many non-trivial minors to check. However, a
theorem states that we only need to check 2n-3 many minors to conclude total positivity.

bool 2bynTotalPositivity(Xirtam m){

bool isTotallyPositive = true;

for (numeric i = 0; i < 2 * XIRTAM.cols(m) - 3; i++){
Xirtam minor = new Xirtam({ XIRTAM.cols(m, 0),

XIRTAM.cols(m, i) });
isTotallyPositive = isTotallyPositive &&

(XIRTAM.determinant(minor) > 0);
}
return isTotallyPositive;

}

Total positivity is important in algebraic combinatorics but historically it stems from real analysis,
because totally positive matrices have real distinct positive eigenvalues, and therefore they are
diagonalizable.

