

TiMRS Timers, Made Readable and Simple

Language Reference Manual

Jeff Kline jk4209 - Systems Architect
Faisal Rahman fr2422 - Language Guru
Daniel Rindone dcr2165 - Project Manager
Eric Webb edw2139 - Tester

COMS 4115 - Programming Languages and Translators
Prof. Stephen Edwards

Spring 2021

1

 1:
Table of Contents

2:

1.0 Introduction
2.0 Lexical Conventions

3:
3.0 Syntax Notation
3.1 Comments

4:
3.2 Keywords
3.3 Constants

5:
3.4 Numerical Constants
3.5 String Constants

6:
3.6 Data Types

7:
4.0 Functions

8:
4.1 The Standard TiMRS

Library
9:

4.2 The Timer Function
Call

5.0 Expressions and
Operators

10:
5.1 Integer Expressions

11:
5.2 Boolean Expressions

12:
5.3 Relational Expressions
5.4 Operator Precedence

13:
6.0 Declarations
6.1 Initialization
6.2 Variables and

Assignment
14:

7.0 TiMRS-Specific
Commands

15:
7.1 Control Flow and

Conditional Statements
7.2 If / Elif / Else

Statements
16:

7.3 While Statements
8.0 Lexical Scope

2

1.0 Introduction
TiMRS is a mixture of Python and C orientated syntax. The use of Python keeps the
programming of timers simplistic, while incorporating C allows the compiler to parse easier and
allow more direct program memory management, should it be needed. A major component of
running a TiMRS script is providing the user with a graphical clock and some indication of
progress throughout the timing routine.

This manual will go into depth to describe the TiMRS language. The goal of this language is to
give users a new way to easily design and script complex timers for any task. This method allows
one to code complex timing procedures using TiMRS’ built-in timer types with customizable
durations and functionalities. These include accounting for repetition, intervals, multiple
processes, saving sessions, and other techniques to track and perform any task where it may be
useful.

Our language aims to provide a simple solution to implement flexible and dynamic timing
systems for multiple different uses. This paper is structured to be used as a guide to properly and
effectively implementing this language.

This manual will emulate the C Language Reference Manual and the Python Language reference
manuals found here, respectively:
https://www.bell-labs.com/usr/dmr/www/cman.pdf
https://docs.python.org/3/reference/

2.0 Lexical Conventions
In general, whitespace is ignored except in the case where it serves to separate tokens. Newlines
are acknowledged as a separator of statements. The tab spacing follows Pythonic characteristics
and belongs to the previous statement in a block of code as it will be covered in 3.0 Syntax
Notation.

https://www.bell-labs.com/usr/dmr/www/cman.pdf
https://docs.python.org/3/reference/

3

3.0 Syntax Notation
Throughout the course of this manual, specific syntax as it is reflected in the TiMRS language
will be designated by the Courier New font style.

The newline character, as it does in Python, acts as the statement terminator as mentioned
previously. Code blocks are indicated by the use of a tab character. Please see below for a use
case:

Example:
// 5 times it runs the following:
5 rounds:

// 2 minutes followed by 10 seconds

2 min then print(“Done”)

10 sec then run(“./game/chess”)

5 min then alert(“STOP”)

// 30 seconds then 15 seconds 2 times

2 rounds of:

30 sec

15 sec

// 3 minutes

3 min

// 30 seconds

30 sec

3.1 Comments
Comments will be introduced by using a double forward slash, an example is provided below

Example:
// this is a comment

Everything following the comment syntax and before a new line is to be considered a comment.
Block comment capability has deliberately not been included in the TiMRS language and
comments do not have the ability to nest.

4

3.2 Keywords
For this language, there are certain phrases that hold special value and are reserved as keywords
that are not recommended to be used otherwise:

● in
● def
● is
● True
● False

3.3 Constants
There are three constants found in this language, further explanation of each constant is
described in the following sections:

Numerical Constants:

● Integers
● Floating point numbers

String Constants:

● Strings

5

3.4 Numerical Constants
In the TiMRS language, a numerical constant refers to any collection of numbered digits. Only
whole integers and decimal float numbers are recognized, and all other classifications are
excluded from recognition. All numbers must be non-negative.

Example:

Whole numbers:
34 sec

4 min

1 hr

Float numbers:

55.0 sec

4.4 min

0.3 hr

3.5 String Constants
A string constant for the TiMRS language is indicated through any given sequence of numbers
and characters that are surrounded by double quotation marks. These marks are represented as:

Example:
// start 5 min timer with label

5 min “heat oven”

A string literal classifies under the datatype ‘string’ and is terminated by a null byte \0 to
indicate the end of the string. In TiMRS, the backslash character \ is used for escaping
characters in the string. \n is used for creating a newline character and \t is used for creating a
tab.

6

3.6 Data Types
There are four primitive data types recognized in TiMRS:
int, float, string, and bool

Additionally, four complex data types exist as well:
Timer, hr, min, and sec

Please see examples of use below:

Primitive data types:

Complex data types:

Type Description

int Integer
Example: 10

float Floating point number
Example: 4.5

string String:
Example: “hello”

bool Boolean
Example: True

Type Description

Timer A struct within TiMRS that is composed of:

string label

hr

min

sec

hr int value, 3600 seconds
Example: 2 hr

min int value, 60 seconds
Example: 3 min

sec float value, 1 second
Example: 1 sec

7

4.0 Functions

The user is able to formulate more specific user-defined functions in addition to the standard
TiMRS library which will be covered in the next section. These functions have arguments and
return types that depend on the output of the given function.A function begins with the keyword
def followed by the function’s name and any number of parameters. When initially defining a
function, the function’s statement is preceded by finishing the function with a colon “ : ” .
When calling a function, a colon is not needed.

Syntax:
// function declaration

def name(list of parameters):

statement

// function call

name(list of parameters)

Example:
// user-defined function declaration
def cook_pizza(min x, string msg):

if (x <= 30):

 x min msg

 else:

 (x - 10) min msg

 alert(msg + “done”) // library/built-in function

// function call

cook_pizza(10, first_pizza)

8

4.1 The Standard TiMRS Library

A number of pre-constructed library functions assist with key tasks in TiMRS. These operate
exactly how functions are described above, but in this case their behavior cannot be modified by
the user.

Functions included in TiMRS cover a number of basic needs when constructing a timer, these
include:

alert(expression)

Prints the expression to standard output. Accepts strings.

run(expression)

Accesses the path located in the expression and then proceeds to execute that task.

pause(expression)

Pauses the timer value included in the expression with the ability to start where it left off.

start(expression)

Starts a paused timer value in the expression at the time where it was paused.

stop(expression)

Stops the timer value included in the expression and exits that timer loop.

9

4.2 The Timer Function Call

A critical function included in the TiMRS language is the Timer function. This function assists
the programmer in creating custom timers (and timer attributes) and identifying them for later
use. This function takes the form:

Syntax:
Timer

 str label = “cook_pizza”

 int hr = 0

 int min = 1

 int sec = 10

// creates a timer structure labeled “cook_pizza”

Timer cook_pizza = 1 min 10 sec

Example:
cook_pizza(min x, string msg, string alt):

x min

print(msg)

alert(alt)

5.0 Expressions and Operators
The TiMRS language follows relatively Pythonic conventions when it comes to grouping
expressions. Expressions in this language include integer expressions, Boolean expressions,
relational expressions, string expressions, function calls related to the Timer object. A more
in-depth explanation of these expressions and their operators are listed in the following sections.

10

5.1 Integer Expressions
Expressions involving integers often include mathematical arithmetic expressions, these include
use of the infix operators:

Precedence rules follow standard conventions in TiMRS integer expressions. Operands may be
used through one of the three int and float complex data types described in section 3.6 -
Data Types, or are defined as numbers expressed through the definition at 3.4 - Numerical
Constants.

Example:
1 hr + (2 sec * 3 min)

+, -, *, /, and () Standard operations for mathematical
arithmetic

11

5.2 Boolean Expressions
Examples of Boolean expressions in the TiMRS language begin with either the keywords true or
false.

Logical operations in TiMRS include the following:

Logical Operators:

The grouping of the above operators is from left-to-right.

Additional elements of Boolean expressions include the formation of relational expressions as
defined below.

||

Standard logical OR
Returns true if either of the left or right
boolean expressions evaluate to true.
Example:
 a || b

&&

Standard logical AND
Returns true if the left and right boolean
expressions both evaluate to true, otherwise it
returns false.
Example:
 b && a

!

Standard logical NOT
Applies as a unary operator to a boolean
expression. Results in true if the value of the
operand is false and vice-versa.
Example:
 !b && a

12

5.3 Relational Expressions
Operators to express relational expressions are of the following form:

Operands for these comparisons are integers. The result of the comparison is a bool whose value
is true if the comparison evaluates to true. Otherwise, it returns false.

The grouping of the above operators is from left-to-right.

5.4 Operator Precedence

!= Inequality

== Equality

< Less than

> Greater than

<= Less than or equal to

>= Greater than or equal to

() Highest

!

*, /, %

+, -

>, <, <=, >=

==, !=

&&

||

= Lowest

13

6.0 Declarations
Declarations in TiMRS, as well as their initialization and assignment, take the following form
and are explained in more detail in the subsequent sections:

Example:
// implicit declaration

first_pizza = “cheese”

second_pizza = “hawaiian”

extra_time = 30.0

6.1 Initialization
There are various ways to initialize variables, TiMRS-specific calls and functions. Specific
examples are provided in the following section.

6.2 Variables and Assignment

Assigning values to variables in TiMRS is done using the following operator:

The initialization of a variable or a timer can happen during or after declaration:

Example:
first_pizza

first_pizza = “cheese”

= Assigns the variable on the right hand side to
the variable on the left

14

7.0 TiMRS-Specific Commands
TiMRS includes a number of built-in commands to handle common functions associated with
timer management. Below, those commands are explained in more detail.

TiMRS-specific commands:

Example:
// simple timer that opens a file after a given period of time

loc = “./training/v1.mov”

// 5 times it runs the following:

5 rounds:

// timer, no label

2 min

// timer with label

10.0 sec “REST”

5 min

 alert(“RESET”)

// runs the file/program at loc

 run(loc)

// 30 sec, 15 sec, 2 times

2 rounds:

30.0 sec “JUMP”

15.0 sec “SIT”

3 min

30.0 sec

rounds Looping condition based on ‘#’ value

start Starts a timing event

pause Pause timer

stop Stop timer

del Removes a timer object

run Runs a file at a given location

alert Print a user-defined notification to the screen

15

7.1 Control Flow and Conditional Statements
In TiMRS, if, elif, else, and while statements are used to assist in conditional statements
and loops that the rounds command can not achieve. See below for their use cases.

7.2 If / Elif / Else Statements

In TiMRS, if, elif, else statements are used by implementing the following:

Syntax:
if (expression):

statement

elif (expression):

statement

else:

statement

Example:
// if statement

if (first_pizza == “hawaiian”):

alert(“add pineapple”)

// timer called with an identifier

extra_time sec

cook_pizza(10, first_pizza)

// elif statement

elif (first_pizza == “cheese”):

cook_pizza(8, first_pizza)

// else statement

else:

cook_pizza(10, first_pizza)

16

7.3 While Statements
In TiMRS, while statements are used by implementing the following:

Syntax:
while (condition expression):

statement

Example:
// while statement

int a = 0

while(a < 10):

1 min

a = a + 1

8.0 Lexical Scope

The scope of a variable in TiMRS is where the variable lives in the program and where that
variable can be accessed within the code. Global variables can be accessed throughout the
entirety of the code while local variables can only be accessed within their function.

