

Racontr Language Reference Manual

Morgan Zee (mbz2112), Shirley Ye (sy2650), Saumya Agarwal (sa3656), Xinye Jiang (xj2253),
Janelle Ponnor (jp4024)

February 24, 2020

Contents
1. Overview of Racontr……………………………………………………….………………….. 2

1.1 Goals and Motivations……………………………………………………………….. 2
2. Lexical Conventions……………………………………………………………….………….. 2

2.1 Comments……………………….……………………………….........……………... 2
2.2 Identifiers…..………………………………………..………………...……………... 3
2.3 Keywords/Type Specifiers………………………………………………………….... 3
2.4 Constants & Literals…………………….……..…………..……………………….... 3
2.5 Operators…………………………………………..…………………....……………. 4

3. Data Types…………………………………………………………………………………….. 4
3.1 Scene…………………………………………………………………………………. 5
3.2 Item…………………………………………………………………………………... 5
3.3 Character …………………………………………………………………………….. 6
3.4 Mission ………………………………………………………………………………. 6
3.5 Achievement ……………………………………………………………………….... 7
3.6 Story Background……………………………………………………………………. 7
3.7 Ending ……………………………………………………………………………….. 7

4. Statements and Expressions…………………………………………………..……………….. 8
 4.1 Conditional Statements………………………………….…………..……………….. 8

4.2 Declaration Statements……………………………………..…………..……........... 10
4.3 Expressions…………………………………………………………………………. 11

5. Classes………………………………………………………………………………………... 13
5.1 Class Definitions……………………………………………………………………. 13
5.2 Inheritance…………………………………………………………………………... 14

6. Standard Library………………………………………………………………………........... 14
6.1 List………………………………………………………………………………….. 14
6.2 Strings………………………………………………………………………............. 14
6.3 Properties……………………………………………………………………............ 15
6.4 Built-in Property types……………………………………………………………… 15

7. Sample Code…………………………………………………………………………………. 16

1

1. Overview of Racontr

The Racontr programming language allows users to design and implement their own creative
text adventure games. Racontr is fairly dynamic and can be used to develop a wide range of
stories with customizable people, places, and things. The adventure that players can embark on
will be in the hands of the programmer, who can either provide the user with predefined
storylines that vary depending on what option the user selects or allow the player to decide how
the story unfolds.

1.1 Goals and Motivations

Racontr is inspired by projects done by students in previous semesters, including GAWK (2014),
a language used to build role-playing games, and GRIMM (2004), an interactive story-building
language. In particular, we used the sample games from GRIMM as a key example of potential
games that can be implemented in Racontr. We paid attention to their type declarations,
assigning attributes to specific objects, and conditional statements. We also adapted elements
from existing programming languages like Python, in terms of syntax and functionalities, and the
interactive fiction programming language ZIL, specifically in terms of creating objects and using
Boolean flags to enable specific manipulations of objects. We followed the basic structure of the
Language Reference Manual of Coral (2018) and the C Reference Manual.

In terms of goals, we hope Racontr will 1.) allow users to easily define and customize people
(characters), places (scenes), and things (items) to build detailed and creative scenarios, 2.) be
easier to build text-adventure games than existing object-oriented languages, and 3.) incorporate
slightly adapted, yet familiar syntax from Python to maximize simplicity and ease of use.

We have drawn on elements from the existing languages and interactive fiction experiences
discussed above to develop Racontr, which we hope programmers and players alike will use to
have fun and expand their creativity.

2. Lexical Conventions

There are five kinds of tokens: comments, identifiers, keywords, constants, operators. In general
blanks, tabs, newlines, and comments as described below are ignored except as they serve to
separate tokens. At least one of these characters is required to separate otherwise adjacent
identifiers, constants, and certain operator-pairs. If the input stream has been parsed into tokens
up to a given character, the next token is taken to include the longest string of characters which
could possibly constitute a token.

2.1 Comments

2

The characters /* introduce a comment, which terminates with the characters */. They do not
indicate a comment when occurring within a string literal. Comments do not nest. Once the /*
introducing a comment is seen, all other characters are ignored until the ending */ is encountered.

2.2 Identifiers

An identifier, or name, is a sequence of letters, digits, and underscores (_). The first character
cannot be a digit. Uppercase and lowercase letters are distinct. Name length is unlimited. The
terms identifier and name are used interchangeably.

2.3 Keywords/Type Specifiers

The following identifiers are reserved for use as keywords, and may not be used otherwise:

return

if

elif

else

endif

for

while

endwhile

int

bool

string

extends

assert

scene

character

item

name

description

in

say

says

read

def

2.4 Literals/Constants

3

The three types of constants are integer, string, and boolean. Each constant has a type,
determined by its form and value.

2.4.1 Integer constants

An integer constant is a sequence of digits.

2.4.2 Strings

A string is a sequence of characters surrounded by double quotes ‘‘ " ’’. In a string, the character
‘‘ " ’’ must be preceded by a ‘‘\’’.

2.4.3 Booleans

A boolean can have one of two values: true or false. It is used to perform logical operations, most
commonly to determine whether some condition is true.

2.5 Operators

An operator specifies an operation to be performed. The operators () and { } must occur in pairs,
possibly separated by expressions. An operator can be one of the following:

{ } ()
; , =
! = < <= & |
+ - *

3. Pre-defined Data types

Aside from int, string, boolean, and collection types such as list and array, there are five essential
customized data types that allow the users to define the game: Scene, Item, Character, Mission,
Ending. Related to the five essential data types, supporting property types help define the details;
some of them should be customized by the users, while some of them are built in (mentioned in
6.4). There are also two optional data types that can enrich the game: Achievements and Story
Background.

3.1 Scene

4

Scene is a data type that contains information about places a player can explore. The user would
be expected to define a collection of scenes that characterize a virtual map of the game. The
Scene contains sub-data types; some of them should be customized, while some of them should
be selected from built-in property types.

3.1.1 Name

This contains a size-60 String of the scene’s name. Scene’s names are unique.

3.1.2 Address

This is a collection of the relationship between the current scenes and the adjacent scenes.

Their relationship is defined by the Built-in Property types: NORTH, SOUTH, EAST, WEST,
NE, SE, NW, SW. The adjacent scenes can be accessed through these addresses.

3.1.3 Description

This contains text that describes the scenes.

3.1.4 Action

Users should define a list of actions that the character can make. Each action should be

defined with a line of String. The action can result in a change of Scene, Character’s status,
missions’ status, item’s status, and/or achievements’ status, depending on the users’ definition.

3.2 Item

Item is a data type that contains information about an item in a scene that can be interacted by
the player.

3.2.1 Name

This contains a size-60 String of the item’s name. Items’ names are not unique.

3.2.2 ID

 This is an ID for the item, by default set to 0. This would differentiate items with the

same name.

3.2.3 Effect

5

Users should define a list of effects of the item. Each effect should be defined with a line

of String. The action can result in a change of Scene, Character’s status, missions’ status, item’s
status, and/or achievements’ status, depending on the users’ definition.

3.3 Character

This is the data type that contains information about player-controlled characters and other
user-defined characters.

3.3.1 Name

This contains a size-60 String of the character’s name. Characters’ names are unique.

3.3.2 Category

Users can choose from “Enemy”, “NPC”, and “Player-Control”. This is a String.

3.3.3 Health

This is an integer that indicates the health of the character. For NPC and

Player-controlled characters, the health is by default 100, the upper limit is 200, and the lower
limit is 0. For Enemy, the upper limit is infinite, and the lower limit is 0.

3.3.4 Item

This is a list of the items that the character’s possessing.

3.3.5 Scene

This is the location of the current character.

3.4 Mission

This is the data type that contains the information of missions listed by the users for the players.
This is optional and should be checked after every action is performed.

3.4.1 Name

6

This contains a size-60 String of the mission’s name. This is unique.

3.4.2 Description

This contains text that describes the missions and how it can be completed.

3.432 Status

This contains a boolean value indicating whether the mission is completed or not.

3.5 Achievement

This is the data type that contains the information of achievements a player can make. This is
similar to PlayStation’s trophies and Steam’s achievements. This is optional.

3.5.1 Name

This contains a size-60 String of the achievement’s name. This is unique.

3.5.2 Description

This contains text that describes the achievements and how it can be completed.

3.5.3 Status

This contains a boolean value indicating whether the achievement is completed or not.

3.6 Story Background

This contains the user-defined story background of the game. This should be provided to the
player before they start the game.

 3.7 Ending

This contains the user-defined endings for the game. This could be related to achievements and is
mandatory to implement.

3.7.1 Name

7

This contains a size-60 String of the ending’s name. This is unique.

3.7.2 Description

This contains text that describes the ending.

3.7.3 Status

This contains a boolean value indicating whether the ending is reached. If reached, the

description will be provided to the player.

4. Statements and Expressions

There are various types of statements and expressions that can be written in Racontr. These
include conditional statements, declaration statements for defining variables and functions, and
assignment statements. Racontr also makes use of binary operators to write useful expressions.

4.1 Conditional Statements

In Racontr, users can utilize various conditional statements, including if, elif, and else
statements, for loop statements, and while loop statements. These statements align closely with
the clear and concise syntax and functionality of the conditional statements provided in Python.

4.1.1 If, Elif, Else Statements

Racontr supports if, elif, and else statements. If statements begin with a conditional predicate or
expression followed by a collection of statements enclosed in curly braces {}. The collection of
statements of the conditional are indented and describe actions to if the predicate is met. If the
conditional predicate evaluates to True, then the statements within the curly braces are evaluated
and executed. If the conditional predicate evaluates to False, the program will continue to the
next statement. The next statement could be an additional special condition that the user wants to
define for the same variable tested in the if statement. The syntax will match the if statement, but
will begin with the keyword elif. There is also the option to insert a final statement following the
same syntax but starting with the keyword else. If neither the if and elif conditions evaluate to
True, the program will execute the statements enclosed in the curly braces of the else condition.

A sample of if, elif, and else conditional statements in Racontr would appear as follows:

if condition:

8

/*statements*/

elif condition:
/*statements*/

else:
/*statements*/

4.1.2 For Loop Statements

Racontr supports for loops as Python does. The for loops begin with the word For, followed by a
counter variable such as “i” or “x”, initialized outside of the loop, and a specified range. The
range is specified in terms of an iterable object within the parentheses that follow the word
range. In a text-adventure game, the for loop may be used to iterate through a data structure, such
as an array or a list, that contains a character’s possessions and then prints its contents.

A sample of a for loop statement in Racontr would appear as follows:

character_possessions = [“magic wand”, “golden key”, “invisible

cloak”, “baby dragon”]

for x in character_possessions:

print(x)

The example above shows a code snippet from a hypothetical text-adventure game that gives
characters a list of possessions, which the player can access and view. The for loop in Racontr
can iterate over data structures such as lists.

for i in range(1, len(arr)):

print(i)

The above sample code shows the use of the range keyword, starting at 1 and looping for the
length of the array, which can be defined before the loop. This specific range is specified within
the parenthesis after the word range.

for x in range(5):
print(x)

else:
print(“You win!”)

9

Similar to Python, the word range starts the loop at 0 and increments by 1 by default, but can be
specified otherwise as shown in the previous code samples. In the case of the above example, x
starts at 0 unless specified differently outside the loop and is incremented until x reaches 5.
There is also the option of adding an else statement as shown, which will be executed when the
for loop is complete.

4.1.3 While Loop Statements

Racontr also supports while loop statements, which start with the word while, a conditional
predicate, and a collection of statements. As long as the condition evaluates to True, the
statements within the loop are continuously evaluated. The program continues beyond the loop
when the condition is False.

A sample of a while loop statement in Racontr would appear as follows:

while condition:

/*statements*/

Considering a specific instance of use in a text-adventure games Racontr might produce, a game
designer may choose to give players a limited number of lives. This allows players to carry out
specific actions as long as they have lives available.

while has_lives:

/*statements*/

Another example would be allowing a user to carry out specific actions as long as they are in a
specific location shown as follows:

while in Library:

/*statements*/

Racontr uses the conditional keywords while in and endwhile to indicate when the user is in the
main method. This allows for extra clarity and organized code. This may appear as follows:

while in Location

/*statements*/

endwhile

4.2 Declaration Statements

10

4.2.1 Variable Declaration and Assignment Statements
Racontr allows users to define variables using three keywords made up of the string data type.
These keywords include character, scene, and item. Users can create characters by using the
keyword character followed by the name of the character. The characters can interact with one
another, move between scenes, and possess various items. In a similar way, users can use the
keyword scene followed by a location and the keyword item followed by a thing to create these
variables as well.

A sample of declaring character, scene, and item variables to be used throughout a text-adventure
game would appear as follows:

character name
scene location
item thing

Users can take these declarations further by assigning specific attributes or details to the people,
places, or things they construct. These attributes or assignment statements are enclosed in curly
braces and exist whenever the object of type character, scene, or item is called. The assignment
statements include the variable name, followed by an equals sign operator, and an expression
such as a string or a list. The sample code below shows a series of assignment statements that are
used to customize a scene. It is also worth noting the Global variables, objects that can exist in
multiple scenes, and Local variables, objects that only exist in the specified scene, can also be
declared as shown below.

scene location{
 /*attributes/details about the place*/

}

character name{
 /*attributes/characteristics*/

}

item thing{
/*attributes/details about the thing*/

}

4.2.2 Function Calls and Declaration Statements

11

Functions are declared with the keyword def, followed by an identifier, parenthesis, and a colon.
The contents of the function can be a series of statements, which will be carried out if the
function is called. Arguments can be passed into the function within the parenthesis.

A sample of declaring a function in Racontr (similar to Python syntax) would appear as follows:

def identifier():

/*statements*/

Functions will likely be called within the “main” method, within the keywords while in and
endwhile as shown below. Functions are called with the identifier followed by parenthesis.

while in location

/*statements*/

identifier()

endwhile

4.3 Expressions

The main expressions Racontr uses are identifiers (similar to variables), strings, and constants
(integers, booleans). Racontr expressions are evaluated from left to right and follow the standard
precedence of operators, starting with statements in parenthesis, exponents, multiplication,
division, addition, and subtraction. While not all of these operators exist in Racontr, it is still
useful to cover order of operations.

4.3.1 Binary Operators

Racontr supports arithmetic operators: Plus (+), Minus (-), Times (*). These operators appear
between expressions.

expr + expr
expr - expr
expr * expr
It supports comparison and equality operators: Equals (=), Less than (<), and Less than equals
(<=). These statements evaluate to True if the comparison is True and False otherwise.

expr == expr
expr < expr
expr <= expr

12

It supports logical Boolean operators: and, or, not.

expr and expr
expr or expr
not expr

We intentionally eliminated redundant operators (such as Greater than (>) and Greater than
equals (>=) since we already have Less than and Less than equals operators) to reduce
complexity.

5. Classes

5.1 Class Definitions

Racontr will contain built in classes like Scene and Character. However, users can also define
their own classes. The class type will be followed by the class name. The below example code
sets up an instance of a Scene class named butler. The body of the class will be within the two
curly braces.

Scene butler{}

Within each class, users can add variables and data structures that can be attributed to that
specific class. For example, for the above example Scene butler, this can entail a name field and
nearest exits.

Scene butler{

name = “Butler Library”

EXITS = SOUTH TO lawn, NORTH TO 113th Street, EAST TO

Lerner

}

Outside of this class definition, when the user writes code that involves a class defined
beforehand, all contents defined in the class are available to them. For instance, after the class
instance above, the below code is valid since it references values specific to the butler scene
class.

while user in butler:

exit butler to lawn

endwhile

13

5.2 Inheritance

Racontr also supports inheritance between classes by allowing one class to inherit from a
superclass. To make class2 inherit from class1, the syntax would be class2 extends class1 when
defining class2. This would allow situations involving class2 to have access to the same instance
variables and methods as class1 as well as additional values that the user can define. For
instance, if the user were to create a Scene butler_room202 that would clearly inherit from the
Scene butler class, the syntax would be the following.

Scene butler_room202 extends butler{

name=”Butler Library: Room 202”

}

Then, the user can continue to write code that references both values defined in the superclass
Scene butler as well as values defined only in the subclass Scene butler_room202.

6. Standard Library

6.1 List

Racontr has a built-in list data structure with dynamic length. Lists in Racontr can hold objects of
any arbitrary type and behave identically to Python lists, and support the following operations:

6.2 Strings

Class Strings in Racontr supports indexing and a variety of useful methods for handling
text-based data. Any operation on an existing string will return a new string.

14

Method Behavior

list[x] Returns the xth element

list.append[x] Adds element x to the end of the list

list.remove[x] Removes element x from the list

list.count[x] Returns the length of the list

6.3 Properties

Properties make up the object definitions of scenes, characters, and things in Racontr. This class
has three main functions that allow users to handle properties of an object.

6.4 Built-in Property types

NORTH, SOUTH, EAST, WEST, NE, SE, NW, SW: These are the direction properties,
generally used only in room definitions. For the various types of direction properties, see section
2.2. Note that the cardinal direction properties are not abbreviated, but that the non-cardinal ones
are abbreviated. There is no direction property called NORTHEAST, for example.

UP, DOWN: These are just like the eight direction properties.

IN, OUT: These are just like the eight direction properties. If the player just types IN or OUT,
this property will handle the movement. Generally, it's a good idea to give the OUT property to
any room with only one exit.

ACTION: Defines the action routine associated with the object. In the case of an object, the
action routine is called when the object is the PRSO or the PRSI of the player's input. In the case
of a room, the routine is called with M-BEG and M- END once each turn, with M-ENTER
whenever the room is entered, and with M- LOOK whenever the describers need to describe the
room.

15

Method Behavior

str[x] Returns the xth character of the string

str1 + str2 Concatenate two strings

Method Behavior

getp[x] Returns information on Property x of an object

putp[x] Add Property x to an object

setp[x] Change Property x of an object to a newly defined one

LOC: Once again, technically not a property, but it looks just like one when you're creating an
object. Simply, this property contains the name of the object which contains this object (in the
case of a room, this is the object ROOMS).

SIZE: Contains a number which is the size/weight of the object. Generally, it is only meaningful
for a takeable object. If a takeable object has no size property, the game usually gives it a default
size of 5. The size of an object affects the number of object that a player can carry, how much of
a container it takes up, and so on.

CAPACITY: Contains a number which is the capacity of the object. Generally, it is only
meaningful for a container. If a container has no size property, the game usually gives it a default
capacity of 5. The capacity of a container affects the number of objects which can be placed
inside it.

VALUE: This property is used in many games that have scoring. The property contains a
number; in the case of rooms, it is the number of points the player gets for entering the room for
the first time; in the case of objects, it is the number of points the player gets for picking up the
object for the first time. GLOBAL: Generally found only in room definitions, this property
contains a list of objects which are local-globals referenceable in that room.

TEXT: This property contains a string which is used when the player tries to read the object. It
exists for those objects which would otherwise need an action routine to handle READ but
nothing else.

THINGS: Formerly known as the PSEUDO property, this property allows you to create
"pseudo-objects" with some of the properties of real objects. They have three parts: a list of
adjectives, a list of nouns, and an action routine. Here's an example:

(THINGS (RED CARMINE) (SCARF ASCOT) RED-SCARF-F)

Pseudo objects are very limited, however. They cannot have flags, and they cannot be moved. It
is beneficial to use them whenever feasible, because (unlike real objects) they take up no
pre-load space.

PICTURE: Contains the name of a graphic from the picture file associated with the room or
object.

FLAGS: This is another fellow which looks just like a property but isn't actually a property. It
contains a list of all the flags which are FSET in that object at the start of the game. Examples of
common flags include ENTERBIT and EXITBIT, which could be applied to a scene object for
example to allow a user to enter and exit.

7. Sample Code

16

This is a potential game users can write using Racontr. This snippet is adapted from a game in
the GRIMM programming language.

/*declare scenes and characters*/

Scene butler

Scene lawn

Character Player1

Character librarian

Character barista

/*define the class scene butler, use as variable*/

Scene butler{

 name = "Butler Library"

 description = "You are currently in Butler Library. Find the

key and return it to the owner on the lawn"

 picture = readfile("butler.jpg")

 EXITS = SOUTH TO lawn, NORTH TO 113th Street, EAST TO Lerner

 ITEMS= [key, money, book]

 ACTIONS = butler() //display options

 FLAGS ENTERBIT, EXITBIT

 Global Stairs, Bookshelves, Trashcans

 Local Prezbo's bookshelf }

/*similar to main method, shows game is in session*/

while user inside butler:

 options = [$option 1, $option 2, $option 3]

if $option 1:

if user has BOOK:

 then librarian puts BOOK on Prezbo's bookshelf AND

gives KEY

 else

 librarian says "Your book is overdue."

 back to butler()

 if $option 2:

 then barista says "Cafe is closed."

 back to butler()

 if $option3:

 exit butler to lawn

endwhile

17

