
J-Pie Language Reference Manual

Gabriel Clinger (gc2821), George DiNicola (gd2581),
Daniel Hanoch (dh2964), Cameron Miller (cm3959)

Contents

1. Overview of J-Pie

2. Motivation

3. Lexical conventions
3.1. Comments
3.2. Identifiers (Names)
3.3. Type Specifiers and Operators
3.4. Keywords

4. Expressions

4.1. Identifiers
4.2. Unary Expressions
4.3. Binary Expressions
4.4. Relational Expressions

5. Statements

5.1. Expression Statements
5.2. Conditional Statements
5.3. While
5.4. For
5.5. Break
5.6. Return

6. Scope

6.1. Lexical Scope
6.2. Function Declarations

7. Example Code

1 Overview of J-Pie

J-Pie is a language inspired by Python, but without the constraint of indentation to indicate
blocks. J-Pie retains the syntax that makes Python an easy and fun language, while enforcing
curly braces to indicate blocks and semicolons to indicate statement endings to increase
portability. In addition, J-Pie has the notion of a relation, which is a concept from logic
programming. Specifically, our language will attempt to mimic this from the first-order-logic
programming language, Prolog.

2 Motivation

The motivation for our language was to create a language that takes the best of both worlds from
Python and Java. J-Pie is not bound by Python’s indentation rules or Java’s OOP rules. For many
programmers who use Python, using a Python script on a different machine or deploying it into a
production environment can be a nightmare when you receive the error “IndentationError:
unindent does not match any outer indentation level”. After this, Python users have no idea if one
indentation is broken or all of them. Having to go back into your script and delete until the
previous line then press “enter”, then “tab” until your desired definition. We set out to create a
version of Python that uses curly braces rather than indentation (like Java or C) to avoid this
issue.

3 Lexical conventions

3.1 Comments

Block comments can be single-line or multi-line, as long as they are enclosed by two ​##
symbols. For example, ​## this is a comment ##​.

3.2 Identifiers (Names)

Identifiers follow the same conventions as Python. Valid identifiers are made of letters in
lowercase (a to z) or uppercase (A to Z), digits (0 to 9), and/or an underscore _. Note that the
first character must be a lowercase letter, not a digit or an underscore. For example, ​varName_1
is a valid identifier.

3.3 Type Specifiers and Operators

J-Pie supports the following types: ​int​, ​boolean​, ​float​, ​String​, ​List<>​. There are several operators
affiliated with each type. The following symbols are reserved as operators. Note that some
operators are overloaded. For further explanation of how these operators are used, refer to
Section 4 Expressions.

3.5 Keywords
J-Pie reuses several keywords from Python. There is a keyword corresponding to each control
structure, namely ​for​, ​while​, ​if​, ​elif​, and ​else​. Additionally ​def​ is reserved for function definitions,
return​ is reserved for return statements, and ​break​ is reserved for terminating the loop containing
it. ​True​ and ​False​ are reserved as boolean values, and ​None​ denotes a null value or no value at
all. ​print​ and ​len​ are the names of two built-in functions.

4 Expressions

4.1 Identifiers
An identifier is a primary expression whose type is specified by its declaration:
int x means that x is of type int.

4.2 Unary Expressions
The table below shows all unary expressions that J-Pie features.

Data
type

Operators Description Example

int =, ==, !=, <, <=, >, >=,
*, /, +, -, ^, ++, --​, %

A regular integer type int int x = 6;
int y = 4 ^ 7;

boolean =, ==, !=, and, or Evaluates to ​True​ or ​False boolean rainy = true;
boolean wet = false;
rainy and wet; ##false##

float =, ==, !=, <, <=, >, >=,
*, **, /, +, -

A double-precision float
type

0.3 + (1/5); ##0.5##

String =, ==, !=,+ Regular string type.
Characters can be
represented by strings of
length 1.

String a = “Colu”;
String b = “mbia”;
a+b; ##“Columbia”##

List<> in, not in, append Can hold only
homogeneous-type
collection

List<int> p = [1,2,3];
p.append(9);
##p == [1,2,3,9]##

4.3 Binary Expressions
The table below shows all binary expressions that J-Pie features.

Expression Usage

! The logical negation operator ! changes the value of a binary expression to its
opposite. If the value of an expression is True, the result of the ! expression is
False. This operator is applicable only to Boolean expressions.

- The negative of a numerical expression - turns the value of a numerical
expression to its equivalent negative of the same type. This operator is
applicable only on numeric expressions: int, float

++ The increment of a numerical expression ++ increments the value of a numerical
expression by 1. This operator is applicable only on int

-- The decrement of a numerical expression -- decrements the value of a
numerical expression by 1. This operator is applicable only on int

len The len expression gives the size in length of a collection. When applied to a
String the result is the total number of characters, when applied to an Array the
result is the total number of elements in the Array.

Expression Usage

= assignment operator The assignment expression, which groups right to left, takes two
expressions and the value of the right expression is stored in the left
expression. The type of the expression being stored must be the
same as the type declaration of the expression on the left.

* multiplication The binary * operator multiplies the expressions. This operator is
applicable only
on numeric expressions: int, float

/ division The binary / operator divides the first expression by the right
expression. This operator is applicable only on numeric expressions:
int, float.

% modulo The binary % operator gives the remainder of the division of the
expressions. This operator is applicable only on numeric expressions:

4.4 Relational Expressions
The table below shows all relational expressions that J-Pie features.

int, float

- subtraction The binary - operator subtracts the right expression from the left.
This operator is applicable only on numeric expressions: int, float

+ addition The binary + operator adds the expressions. If the expressions are a
numeric type the result is an addition. If the expressions are lists or
strings the result is a concatenation of the expressions.

** exponent The binary ** operator raises a base number by an exponent. This
operator only works on an integer type for both base number and
exponent.

Expression Usage

< less than The binary < operator returns True if the expression on the left is
smaller than the expression on the right. This operator is applicable
only on numeric expressions.

> greater than The binary > operator returns True if the expression on the left is
larger than the expression on the right. This operator is applicable
only on numeric expressions.

<= less than or equal The binary < operator returns True if the expression on the left is
smaller than or equal to the expression on the right. This operator is
applicable only on numeric expressions.

>= great than or equal The binary < operator returns True if the expression on the left is
larger than or equal to the expression on the right. This operator is
applicable only on numeric expressions.

== equals The binary == operator returns True if the two expressions are equal

!= not equals

The binary != operator returns True if the two expressions are not
equal.

5 Statements

5.1 Expression Statement

Expression statements have the form: ​expression; ​Expression statements are typically
assignments or function calls.

5.2 Conditional Statement

The three forms of the conditional statement are
if​ (expression) {

statement​;
}

If​ (expression) {

statement​;
}​ else​ {

statement​;
}

if​ (expression) {

statement​;
} ​elif​ (expression) {

statement​;
...
else​ {

statement​;
}

If in any of the above cases the expression is evaluated to true, the first substatement is executed.
In the second case and third case, the last substatement is executed if the previous conditions do

and

The binary and operator returns True if both expressions evaluate to
True.

or The binary or operator returns true if at least one of the expressions
evaluate to True.

not evaluate to true. The third case chains if conditions when there are more than two
expressions to evaluate, and executes the associated substatement under that condition.

5.3 While Statement
The ​while​ statement has the form

while​ (expression) {
statement​;

}

The substatement is executed continuously while the value of the expression evaluates to true. The
evaluation takes place prior to the execution of each substatement inside of the loop.

5.4 For Statement

The ​for​ statement has the form

for​ (<element> in <Collection>) {

statement​;
}

The <Collection> represents a collection of data types and on each iteration of the loop the <element>
variable will be assigned to the element of the <Collection> on that specific iteration. On each iteration,
the substatement is executed.

5.5 Break Statement
The statement ​break; ​will force the termination of the smallest enclosing ​while​ or ​for​ loop statement.

5.6 Return Statement
A function is terminated and returned to its caller by the ​return​ statement, which has one of the following
forms:

return;
return (​expression​);
In the first case returns the None value. The second case returns the value of the
expression to the function caller.

6 Scope

6.1 Lexical scope
Variables created inside a curly bracket’s scope exclusively belong to the scope. The user cannot access
the variable outside of the scope unless creating a new variable of the same name and/or a different value.
Identifiers are permitted to be used only within their region, enclosed by curly brackets. Attempts to use
an identifier outside of its region will result in an error of “undefined variable.”

- Local: a local variable can be used inside the scope it was initialized
- Global: a global variable can be used anywhere within the scope in which it was initialized. It can

also be used inside “indented” scopes.
Example:

int x = 7;
int y = 9;

{
int z = x + y;

}
print(z) ## will raise an error - z is undefined

6.2 Function declarations

def ​returntype​ ​function-name​(​datatype​ ​parameter-1, datatype parameter-2, …, datatype
parameter-n) {

statement​;
}

6.3 Mutability
Primitives are immutable - the only way to change the value of a primitive is by creating a new object of
the same name. Data structures are ​mostly​ mutable:

List - elements of a list can be changed by accessing the index
Tuples - immutable
Dictionary - keys of a dictionary are immutable; values can be changed by accessing a
specific key.

7 Example Code

7.1 Defining and using a simple function

def int max(int a, int b) {

if(a > b) {
return a;

} elif(b < a) {
return b;

} else {

return a; ## both are the same, just return value a ##
}

}

int x = 1;
int y = 5;

int max_value = max(x, y);
print(max_value);

7.2 Using a while loop and printing

bool flag = true;
int i = 1;

while (flag) {

print(i);
i++;
if (i == 10) {

flag = false;
}

}

7.3 String Concatenation

string word = “race”;
string other_word = “car”;

string combination = word + other_word;

7.4 Appending elements to a list and iterating over it

int list L = [1, 2, 3, 4];

L.append(5);

for (int i in L) {
print(i);

}

