
Arbol Programming Language:
Language Reference Manual

February 24, 2021

Andrea Mary McCormick {amm2497}

Anthony Palmeira Nascimento {asp2199}

Derek Hui Zhang {dhz2104}

1. Introduction 2

2. Lexical Conventions 3
2.1 Comments 3
2.2 Identifiers (Names) 3
2.3 Keywords 3
2.4. Literals 4

2.4.1 Integer Literal 4
2.4.2 Float Literal 4
2.4.3 Boolean Literal 5
2.4.4 Char Literal 5
2.4.5 String Literal 5

2.5 Punctuation 6
2.6 Operators 6
2.7 Whitespace 7

3. Types 8
3.1 Primitive Types 8
3.2 Derived Types: Node Type 8

4. Expressions 10
4.1 Primary Expressions 10

4.1.2 Node expressions 10
Node Declaration 10
Value Assignment for Given Node 11
Node Re-Assignment (pointing to a new Node) 11
Child Node Assignment 11
Get Child Node 11

Node Dereferencing 11
4.2 Operator expressions 11

Equality Operator 11
Addition and Subtraction Operators 11
Multiplication, Division, and Modulo Operators 12
Assignment Equals, Not-Equals Operators 12
Relational Operators 12
Logical And, Or, and Not Operators 12

4.3 Postfix expressions 12
4.4 Unary expressions 13

5. Functions 13
5.1 Function Declaration 13
5.2 Built-in Functions 13

6. Statements 14
6.1 Expression Statements 14
6.2 Conditional Statements 14
6.3 While Statements 15
6.4 For Statements 15
6.5 Break Statements 15
6.6 Continue Statement 15
6.7 Return Statement 16
6.8 Null Statement 16

1. Introduction

In the realm of programming there is a plethora of languages that enable the implementation
of trees. However, in many of those cases such implementations are not native to the
language, which poses particular challenges to inexperienced programmers. Thus, the
purpose of the ARBOL language is to abstract much of the logic behind the Binary Search
Tree data structure in order to reduce the complexity and promote easy access to such useful
functionality.

Our language – which is primary based upon the C programming language – includes built-in
syntax in order to provide ease and usefulness for such Binary Search Trees by comprising
node data structures as well as an element of self-balancing abstraction behind-the-scenes.
The most common tree operations provided through our tree-specific syntax include: node
declaration, child assignment, node dereferencing, and a get-child functionality that provides
easy access to a given nodes’ immediate children. With this new tree-specific syntax and the
underlying layer of abstraction offered by ARBOL, users will be able to solve complex

algorithmic BST problems without having to worry about properly implementing or
operating on the tree data structure.

2. Lexical Conventions
An Arbol program is read by a parser, and input to the parser includes a stream of tokens,
which are generated by the lexical analyzer. This section describes how the lexical
analyzer breaks a file into tokens.

2.1 Comments
The character # introduces a single-line comment, which is terminated by the end of the
line (‘\n’). The character “#*” introduces a multi-line comment, which is terminated with
a corresponding “*#”.

2.2 Identifiers (Names)
An identifier includes some sequence of upper/lowercase letters, digits, and underscores
‘_’. The first character of an identifier must be alphabetic. Identifiers are case-sensitive.

Examples:

2.3 Keywords
The following identifiers are reserved for use as keywords, and may not be used
otherwise (i.e. as variable or function names):

foo

foo_bar

tempChar

function

return

if

else

for

2.4. Literals
Literals are notations for constant values of some built-in types, and are as follows:

2.4.1 Integer Literal
An integer literal is a sequence of digits. An integer literal may begin with the optional
unary operator minus sign (‘-’), which denotes a negative value, or it may begin with a
digit. An integer literal must not begin with a zero if it contains more than one digit. All
integer literals are interpreted as base-10 (decimal) numbers.

Examples:

2.4.2 Float Literal
A float literal consists of a signed integer part, a decimal part, or a fraction part. Both the
integer part and decimal part of a float literal include a sequence of digits. Either the
integer part, or the fraction part (but not both) may be missing.

Examples:

while

continue

break

int

float

boolean

char

null

true

false

89

-9

2537

0

-2.46

2.4.3 Boolean Literal
A Boolean literal has one of the two values: true; false.

2.4.4 Char Literal
A char literal consists of a single character enclosed in single-quotes (‘ ’). The following
escape sequences exist in the Arbol Language and are preceded by a back-slash ‘\’ :

\n Newline
\t Tab
\\ Backslash

Examples:

2.4.5 String Literal
A string literal consists of a sequence of characters surrounded by double quotes (“ ”). A
string has the type: array-of-characters. The compiler places a null byte (\0) at the end of
each string in order to specify the end.

Examples:

62.0

.98

2.3

‘b’

‘’

‘P’

‘9’

“sunshine”

“”

“968”

2.5 Punctuation

The following punctuation conventions are recognized within the Arbol Language and
are as follows:

2.6 Operators

The following operators are listed from top to bottom in order of precedence with their
corresponding associativity:

**Top has the highest precedence: **

@ Create new node, get value of
node

^ Get left or right child

-->, <-- Node assignment

() Expression precedence,
conditional parameters, function
arguments

[] Value access (postfix expr)

{} Statement block

; End of statement

, Separate arguments in function
declaration

Precedence Associativity Description Operator

1 Left-to-right Child node ^

2 Left-to-right Node dereference @

3 Right-to-left Logical NOT !

2.7 Whitespace

Instances of whitespace includes the following:

‘ ’ Blank character
\t Tab character
\n Newline character
\r Carriage return

3. Types

3.1 Primitive Types

There are five primitive types:

4 Left-to-right Multiplication,
Division, Modulo
(remainder)

* / %

5 Left-to-right Addition,
Subtraction

+ –

6 Left-to-right Relational greater
than, greater than or
equal to, less than,
less than or equal to

> ≥ < ≤

7 Left-to-right Relational equal,
not equal to

== !=

8 Left-to-right Logical And &&

9 Left-to-right Logical Or | |

10 Left-to-right Assignment equals,
Node assignment

= ->

3.2 Derived Types: Node Type
All nodes in a tree have the derived Node data type. This data type specifies how we
enter data and what type of data we enter. Each Node data type includes a name,
primitive type, value, and pointers to left/right children (if applicable).

This Node type is built into our language. Just as most other languages have built-in
syntax for creating arrays, our language has built-in syntax for creating binary trees. All
nodes in a tree must have the same type.

The above code creates an integer node named a and assigns the value of 5 to the node.
Remember, a is not of type integer; a is a node type and thus the value cannot be accessed
directly. In order to get the value of a, the dereference symbol @ must be used before the
expression.

int 32-bit integer

float 32-bit single precision floating
point type

char 8-byte data type used to store
ASCII characters

boolean 1-byte data type that is either ‘true’
or ‘false’

void No value (usually used to signify
the return type of a function that
returns nothing)

A node can be created as follows:

int @a -> 5;

Dereferencing node ‘a’ in order to access its value directly

int @a -> 5;

int x = @a + 3;

In the above code, the ‘@’ dereference symbol in the last line indicates that we are
getting the value of a, rather than just the node itself. The equal sign ‘=’ is restricted to
node pointer assignment. For instance, in the code below, the first line creates a new node
of int type named b with a value of 5. However, the second line assigns the node a to
point to the same node that was created in node b. The reference to a is being used; the
second line does not create a new node.

The “-->” operator assigns the node on the right side as the right child of the node on the
left side of the operator. The “<--” operator assigns the node on the left side as the left
child of the node on the right side of the operator. Note that the nodes on both sides must
have the same type, or an error will be returned.

The ^ operator is used to get the left or right child of the current node, depending on
whether the ^ is the left or right side of the variable name. The ^ operator returns the
node, not the value of the said node; to get the value, the node must also be dereferenced.

Create a new node b and assigning node a to point to the same node that
was created in node b:

int @b -> 5;

int @a = b;

Create three nodes; assign c as the left child of c and b as the right child of a.

int @a -> 1;

int @b -> 2;

int @c -> 3;

a --> b;

c <-- a;

Create three nodes; assign c as the left child of c and b as the right child of a.

int @a -> 1;

int @b -> 2;

a --> b;

int @c = a^ # get the right child of a

int d = @a^ # get the value of the right child of a

4. Expressions

4.1 Primary expressions

Primary expressions are literals, identifiers, or expressions in parentheses.

4.1.1 Literal expressions

Literals are integer literals, float literals, boolean literals, character literals, and string
literals.

4.1.2 Node expressions

A node expression allows declaring a node, value assignment for a given node, node
re-assignment, child assignment, getting a child for a given node, and node dereferencing.
See section 3.2 for additional details.

Node Declaration

type @ node

Value Assignment for Given Node

@ node -> expression

Node Re-Assignment (pointing to a new Node)

@ node = node

primary_expression:

 literal

 identifier

 (expression)

Child Node Assignment

node --> node

node <-- node

Get Child Node

node ^

^ node

Node Dereferencing

@ node

4.2 Operator expressions
The following are expressions that include arithmetic, relational, logical, or assignment
operators:

Equality Operator

expression == expression

Addition and Subtraction Operators
expression + expression

expression - expression

Multiplication, Division, and Modulo Operators

expression * expression

expression / expression

expression % expression

Assignment Equals, Not-Equals Operators

expression = expression

expression != expression

Relational Operators

expression > expression

expression ≥ expression

expression < expression

expression ≤ expression

Logical And, Or, and Not Operators

expression && expression

expression || expression

! expression

4.3 Postfix expressions

Postfix expressions are primary expressions, ++ operator, -- operator, and expressions in
brackets (denoting a reference to a particular value).

4.4 Unary expressions

Unary expressions are postfix expressions and the unary minus operator (denoting a
negative value).

post_fix_expr:

 primary_expression

 ++

 --

[expression]

unary_expression:

 post_fix_expr

 -

5. Functions

5.1 Function Declaration

A function in ARBOL can take zero or more arguments. In this example, add takes two
parameters of type int. Notice that the type comes before the variable name.

5.2 Built-in Functions
ARBOL supports a multitude of tree related built-in functions for operating on nodes.
Just a few of the most prominent ones are shown below:

function int add(int x, int y) {
return x + y;

}

height(root) Returns the maximum height of
the tree or subtree

preorder(root) Returns an array with an preorder
traversal of the tree or subtree

inorder(root) Returns an array with an inorder
traversal of the tree or subtree

postorder(root) Returns an array with an postorder
traversal of the tree or subtree

inlevel(root) Returns an array with an in-level
(BFS) traversal of the tree or
subtree

getlevels(root) Returns a mxn matrix containing
all levels in the tree or subtree

validate(root) Returns a boolean. True if a tree
with type integer is a valid BST.
False otherwise.

6. Statements
Statements are executed sequentially.

6.1 Expression Statements
Expression statements are mostly used as assignments or function calls.

6.2 Conditional Statements
Conditional statements are executed as follows (note that the else statement is optional):

6.3 While Statements
While statements can be written as follows::

6.4 For Statements
For statements can be executed as follows:

expr;

if (x == 5) {

return true;

} else {

return false;

}

while(x < 5) {

x = x + 1;

}

6.5 Break Statements
Like in C, break statements can be used to exit out of control statements early:

6.6 Continue Statement
Like in C, the continue keyword is used to indicate that we should continue to the next
iteration of the control statement, as opposed to exiting the control statement early.

When the above code is executed, it produces the following result

for (int x = 0; x < 20; x++) {

 print(“Hi”);

}

for (int x = 0; x < 20; x++) {

 if (x == 5) {

 break;

 }

}

arr = [1,2,3,4,5];

for (int i = 0; i < len(arr); i++) {

 if (arr[i] == 3) {

 continue;

 }

 print(arr[i])

}

1

2

4

5

6.7 Return Statement

Always, only one value can be returned from a function. A return statement with an
expression shall not appear in a function whose return type is void. A return statement
without an expression shall only appear in a function whose return type is void.

6.8 Null Statement
A null statement (consisting of just a semicolon) performs no operations.

