
Pocaml: Poor Man’s OCaml
Leo Qiao, Peter Choi, Yiming Fang, Yunlan Li

Advised by John Hui

Language Introduction & Demo
- "poor man’s OCaml"

- Has main features of OCaml, such as higher-order functions, partial application, pattern matching, parametric

polymorphism, and much of the same syntactic sugar.

- Includes builtins and a standard library for common operations on lists and I/O.

Compiler Pipeline

Lambda Lifting Demo

- produces the correct output “3pocaml3”

- demonstrates the correctness of lambda

lifting in

- let-in expression

- applications

- match arms

- lambda

Lambda Lifting
- makes lambdas function properly in Pocaml

- happens after the lower_ast compiler pass

- rules: lift into top level functions all lambdas except

- top-level lambdas:

let a = fun b -> b

- Immediately nested lambdas:

let add3 = let a = 3 in fun x -> fun y -> x + y + a

- implementation

- example

let increment =

 let i = 1 in

 let j = 2 in

 fun x -> x + i * j

let lambda_1 = fun x -> (fun i -> (fun j -> x + i * j))

let increment =

 let i = 1 in

 let j = 2 in

 lambda_1 j i

Fig: Reduced Abstract Syntax Tree after lower_ast

Codegen: run-time value representation
- _pml_val

- pointer to _pml_val_internal

- _pml_val_internal

- type information

- added to support operator

overloading

- union of all Pocaml data types

- closure:

- representation for lambda

- run-time support for partial application

- lambda creation and application are done

with C run-time library:

- _pml_val _make_closure(_pml_func *fp, _pml_int
num_args);

- _pml_val _apply_closure(_pml_val closure,
_pml_val arg);

- uniform representation

- parametric polymorphism

Codegen: program representation
- Pocaml: sequential evaluation of top-level

definitions

- LLVM: evaluation of an entry main function

- solution:

- top-level variable -> global variable

- value evaluation -> _init_ functions

- sequential evaluation -> call _init_ functions

in main

- example:

- generated LLVM with parts omitted

- notice

- lambda =\= function

- lambda == closure

- _init_f() stores the closure in @f

C built-ins
- Built-ins functions exist in the form of closure.

- During codegen, the built-ins initializer,

_init__builtins, is declared.

- The C code for built-in operators and functions

is linked to the rest of the LLVM code so that it

can be accessed.

C built-ins
- One example of a function called by

_init__builtins is _init__add .

- A closure containing the execution instructions

is made public, created in the same as for a

lambda expression and used in the same way

during codegen.

Standard Library
- List

- length, hd, tl, append

- iter, filter, map, mem

- fold_left, fold_right

- I/O

- print functions for all types

- print functions for printing lists

- to_string functions for all types

- example:

- Implementing graph algorithms with stdlib

- Demo

Automated Testing
- Unit Testing

- Used during active development

- Pretty printing for AST and IR

- Utilized OCaml’s ppx_expect functionality

to auto-generate expected value

- Integration Testing

- Automatic shell script

- MicroC-style

- Checks the output/error against reference

- Saves the execution details to log

- Test suites:

- More than 50 test cases for integration test

- Include both tests that should pass and

should fail

Conclusions and Lessons Learned
- "Be the compiler"

- The power of using the team to solve tough problems, rather than fighting alone

- Viewing programming languages from a more critical lens

- Clean code can be easily explained to others

