
A C-like Matrix Manipulation Language

By: Aaron Jackson (arj2145), Wilderness Oberman (wo2168),
Rashel Rojas (rdr2139), & Mauricio Guerrero (mg4145)

Motivation

Matrices are tedious C is even more tedious
Handling Matrices in C is

downright unbearable

The Solution: MX

C-Like Syntax

● Familiar to programmers
● Modular!

○ Matrices as important as you
want them to be.

○ Free to make regular C-style
programs

Matrices

● Built-in Matrix Data Type
○ Intuitive
○ Lightweight

● Robust Matrix Library
○ Automates tedious Matrix

operations

Simplified MX Architecture

Verbose C Matrix HandlingHappy Programmer Intuitive MX syntax

MX streamlines the use of a pre-existing C Matrix Library

Language Overview

int gcd(int a, int b) {
 while (a != b) {
 if (a > b) a = a - b;
 else b = b - a;
 }
 return a;
}

int main()
{
 String s; Matrix m; bool b; float f;

 s = "Hello World";
 f = 2.1;
 b = false;
 m = [[1,2],[3,4]];

 print(gcd(2,14));
 print(gcd(3,15));
 print(gcd(99,121));

 #A single line comment

 /* A multi line
 comment */

 return 0;
}

Function declaration

Control Flow

Main function
Variable declaration before
initialization

Variable initialization after declaration

Matrix literal + initialization

Function calls

Comments

Return for main function

Language overview: Data Types + Operators

● Types: int, float, boolean, strings, matrices
○ Implicit casting between ints and floats to float for arithmetic

operations
○ Variables must be declared before they are instantiated

● Unary operators: !, - (negation)
● Arithmetic operators: +, -, /, *
● Relational operators: >, <, >=, <=, ==, !=
● Logical operators: &&, ||, !
● Assignment operators: +=, -=, *=

int x;
bool b;
float f;
String s;
Matrix m;

i = 3;
f = 4.2 + 3; #
7.2
b = false;
s = “mx”;
m =
[[1,2],[3,4]];

Language overview: Built-in functions & Control Flow

main()

print()

printb()

prints()

printf()

pi()

* matrix built-in functions in the next few slides

if (boolean condition) {
body;

}

while (boolean condition) {
body;

}

int i;
for (i = 0; i < 10; i += 1) {

body;
}

Language overview: Matrix Data Type

Matrix Declaration:

Matrix m;

/*Matrix of ints only*/

Matrix Initialization:

m = [[1,2],[3,4]];

/* Each list of elements
corresponds to a row in the
matrix */

Language overview: Matrices Data Type

m = [[1,2],[3,4]];

typedef struct Matrix {

 int num_rows;

 int num_cols;

 int *matrixAddr;

 int buildPosition;

} Matrix;
MX codegen.ml

mx.c

Created a C library consisting of matrix functions and linked it to our compiler through codegen

Language overview: Matrix Library

➢ Add
➢ Subtract
➢ Matrix multiplication
➢ Scalar multiplication
➢ Transpose
➢ Identity
➢ Reflection

○ line y = x
○ line y = -x
○ X-axis
○ Y-axis

➢ Rotations:
○ 90° (anti)clockwise
○ 180°

Matrix m1;
Matrix m2;
Matrix m3;

m1 = [[1,1],[2,2]];
m2 = [[3,3],[4,4]];

m3 = m1 +. m2;
m3 = m1 -. m2;
m3 = m1 *. m2;
m3 = m1 **. 2;
m3 = m1’;
m3 = identity(2);
m3 = transformation(m1, 1);
m3 = transformation(m1, 2);
m3 = transformation(m1, 3);
m3 = transformation(m1, 4);
m3 = transformation(m1, 5);
m3 = transformation(m1, 6);
m3 = transformation(m1, 7);

Language overview: Matrix Library

➢ Print matrix

➢ Get the number of rows

➢ Get the number of cols

Matrix m;

m = [[2,4],[3,6],[4,8]];

print_matrix(m);
/*
[2, 4]
[3, 6]
[4, 8]
*/

print(numRows(m)); # 3
print(numCols(m)); # 2

Compiler Architecture: Overview

Semant + Codegen

| Mx l ->

 let rows = List.length l in

 let cols = List.length (List.hd l) in

 let col_check list = List.map (fun v
-> if List.length v != cols then raise
(Failure "Matrix rows are not all the same
length")) list in

 ignore(col_check l); (Matrix(Int), SMx
(l, rows, cols))

| SBinop (((A.Float,_) as e1), op,
((A.Int,_) as e2)) ->

 let e1' = expr builder e1
 and e2' = expr builder e2 in
 (match op with
 A.Add -> L.build_fadd
 | A.Sub -> L.build_fsub
 | A.Mult -> L.build_fmul
 | A.Div -> L.build_fdiv
 | A.And | A.Or | A.Mxadd | A.Mxsub |

A.Mxtimes | A.Mxscale ->
 raise (Failure "internal error:

semant should have rejected and/or on float")
) e1' (L.build_uitofp e2' float_t

"tmp" builder) "tmp" builder

Matrix Error Checking Arithmetic Operator Casting

Testing

● Created passing/failure test cases
○ output in .out and .err files, respectively

● Checks for semantic/syntax errors

● Demonstrates variable assignment, arithmetic operations,

control flow, matrix operations, user-created functions, etc.

● Regression testing script (testall.sh) to test all test cases
○ Compares output file with expected output file

DEMO

Post Mortem

● Less verbose back end
● Implementing pointers, Arrays; Better Matrix structure
● Implement float matrices
● More matrix functions

○ Instantiate an empty matrix given number of rows and columns
○ Get a column/row from a matrix
○ rref
○ rank
○ horizontal/vertical shear
○ inverse

● More implicit casting
○ float/int for assignment

THANK YOU!
Thank you to Professor Edwards, all of the TAs, and the guy that made MicroC

 for your help!

