
K A Z M
Katie Kim

Aapeli Vuorinen
Zhonglin Yang
Molly McNutt

Authors listed in an order that makes
their first names spell out `Kazm'.

Overview — Language
● Kazm is a C-like language

● Subset of basic C functionality

● Written in OCaml{,Yacc,Lex}, outputs LLVM IR

● Interesting functionality:

○ Classes: on heap, member variables, class methods

(implemented using pointer to self, “me”)

○ Arrays: heap-allocated, static length

○ Scopes: curly braces, tracking of variable lifetime

Overview — Architecture
● We chose to have a separate

SAST that contains the types

and other info of all nodes in

the program

● Minimal copy-pasting from

MicroC!

Kazm source
file

Scanner

Parser

Tokens

AST Semantic
Checking

Codegen
LLVM
IR

SAST

C library
Builtins

Linker

Executable

(S)AST

Semantic checker
● Checks functions

With a StringMap storing all functions’ info

○ No duplicate function name

○ Correct variable binding list

○ Correct return type

● Checks classes

With a StringMap storing all class name and variables

and StringMaps storing all class methods’ info

○ Defined class type

○ Defined class instance variables

○ Defined class methods

○ Correct constructors and destructors

● Checks array types and length (partially e.g. my_arr[i])

● Checks operators type

● Checks variables’ scopes

Scopes
● Variables are allowed to be initialized

anywhere inside a function

○ int i; -> Initialize((Int, “i”), None)

○ int i = 1; -> Initialize((Int, “i”), Literal 1)

● Variables accessible inside the scope

(block { }) where they are initialized

Classes: motivation
● You see this a lot when writing C:

○ Struct with the members

○ Bunch of functions prefix with “structname_”

○ First param is always a pointer to the struct

● Heap allocated named structs

● Methods are normal functions with:

○ Name mangling

○ First param is always a pointer to the

struct

○ Refer to self as “me”

● Classes can be passed as parameters

to other functions (passed as ptr),

including other classes’ methods

● Optional constructor and

destructor

Classes: implementation

Arrays — Katie
- Allocated on the heap

- Design choice with future

improvements in mind

- Fixed length

- Access with .length

- Declaration with and without

initialization supported

- Without initialization: initialized to

default value – not left empty

- Cannot be returned by functions

- Cannot have arrays of classes

- Leak memory

Testing
● Comprehensive test suite of 145 tests

● Test Runner Output

● Loggy.txt

● Tests.md

● Makefile

Enhancements: aka what’s broken
● Dynamic length arrays (currently fixed length)

● Array and class interop (can’t do arrays of classes)

● Classes don’t have well defined semantics for assignment, move, copy, etc

● Arrays leak memory! No free, only malloc!!

Who did what
● Aapeli: Codegen, Classes, Scopes, Test Runner, Docker, GitHub actions

● Zhonglin: Semantic analysis and SAST, Literals, Strings

● Molly: Testing & Test Suite, Arrays (mostly support), Final Report

● Katie: Arrays, Final Report

Kazm source file

Scanner

Parser

Tokens

AST
Semantic Checking

Codegen
LLVM

SAST

C library
Kazm library

Linker

Executable

