
1

Vowel
The Way for Wordsmiths

Name UNI
Coby Simler zys2102
Aidai Beishekeeva ab5248
Lex Mengenhauser am4958
Vikram Rajan vjr2123

1. Motivation
Certain tasks require programmatic processing of large amounts of textual data. Such

tasks often involve analyzing, operating on, and comparing large bodies of structured and
unstructured streams of text. Iterating over and manipulating these streams with existing
languages means relying on generic control flow and syntax, or otherwise importing third-party
libraries. Vowel aspires to enable programmers to quickly analyze, manipulate, and map
functions onto such large text streams.

2. Description
Vowel is a high-level, imperative, statically-typed programming language intended to be

used to iterate over, operate on, and manipulate large text streams. To do this, Vowel introduces
the ‘stream’ data type and supports a novel control flow syntax tailored for text processing.
Specifically, the language will have Python-style control flow and function definition syntax with
Java-like typing. This will enable potential optimizations due to known types at compile time. In
addition, the language will use Java-live parentheses, curly braces, and semicolons.

3. Language Features
3.1 Stream data type
Key to Vowel is the native stream data type, which is intended to hold text data. The

underlying storage of a stream object in memory will be no different than that of a string,
though Vowel-implemented operators (e.g. +, -, *, /) will perform distinct manipulations on
stream parameters. Additionally, strings in this language are immutable whereas streams are
not. The following table describes the stream data type and operators.

3.2 Operators for Stream data type

Operator Data Types Description

+ stream A + stream B =
list C

Produces a list of words that appear in the union of
both streams

2

- stream A - stream B =
list C

Produces a list of words that appear in stream A and
not in stream B

% stream A % int x =
stream A

Modifies stream A to contain the first x sentences in
the stream A

* stream A * int x =
stream A

Modifies stream A to contain the text of stream A
repeated x number of times.

/ stream A / stream B =
list C

Produces a new list C that contains the intersection
of streams A and B

[] stream A[language
unit int x : int y] =
stream A

Modifies stream A to contain language unit x -
(y-1)

3.3 Control Flow Syntax

In addition to providing Python-like while loops and for loops, Vowel introduces a
new loop syntax and keywords intended to simplify the process of iterating over and
manipulating stream data types. Programmers can use the ‘replace’ keyword and syntax to
more easily express stream manipulations in fewer lines. For instance, a program in Vowel to
apply the .upper() method to every third word in a string might look like the following:

stream sentence = "The quick brown fox jumps over the lazy dog";

replace word 3 in sentence { word.upper(); }

4. Syntax

4.1 Reserved Words

while, for, in, if, else, def, class, return, true, false, int, float,

char, bool, string, stream, len, letter, word, paragraph

4.2 Primitive Data Types

Description Example

Int Numeric type. Positive or negative integer
number.

int year = 2021

Float Numeric type. Positive or negative
decimal number.

float pi = 3.14

3

Bool Boolean value: true or false. bool coffeeDay = true

String Text type. Immutable sequences of
Unicode code points.

string name = “Vowel”

Stream Text type. Mutable sequences of Unicode
code points. Provides more functionality
than String data type.

stream a = “Some large text here”

4.3 Basic Operators

Operation Data types Description Example

+ Int, Float, String Addition
Int + Int = Int
Int + float = float
Str + str = str

4 + 4 = 8
4 + 5.0 = 9.0
“Vo” + “wel” = “Vowel”

- Int, Float Subtraction
Int - Int = Int
Int - Float = Float

16 - 8 = 9
13 - 7.0 = 6.0

*, / Int, Float Multiplication, Division
Int * Int = Int
Int * Float = Float
Float * Float = Float

4 * 3 = 12
4 * 1.2 = 4.8
1.2 * 1.2 = 1.44

4.4 Assignment, Comparison, and Logical Operators

Operator Description Example

= Assignment operator string color = “grey”

+=, -= Adds/Subtracts value from existing variable
and assign it new value

int a = 5
a += 3

== Compares values of two expressions.
Returns True of False

“Vowel” == “VowEl” ⇒ False

>, >=, <, <= Checks if a value is larger/smaller (or equal). 4 >= 4.0 ⇒ True

!= Check if values of two expressions are not
equal.

int a = 5
Int b = 8
a != b ⇒ True

4

and Returns True if all of the expressions are
True, otherwise False

9 > 5 and 8 < 13 ⇒ True

or Returns True if one of the expression is
True, otherwise False

7 > 9 or 4 < 19 ⇒ True

not Inverses the result of False to True, True to
False

not True ⇒ False

4.5 Stream Operators

Member Variables
● stream.word_count

○ Returns total number of words in a stream
● stream.paragraph_count

○ Returns total number of paragraphs in a stream
● stream.page_count(int size)

○ Returns page count based off size of each page (words per page)
Operators

● stream.cite(int year, string author, int date_published)
○ Returns a dictionary mapping the input stream with a MLA citation

● stream.concatenate(stream s)
○ Adds the contents of the stream passed in to the stream object called on

● stream.toString()
○ Converts a stream to type string

● stream.replace(string source, string new_value)
○ Returns the stream with replaced values

● stream.freq(string s)
○ Returns an integer frequency of the word’s appearance in the stream

● stream.split_p()
○ Returns a list where the values are paragraphs, delimited by “\t”

● stream.split_s()
○ Returns a list where the values are sentences, delimited by “., !, ?”

● stream.split_w()
○ Returns a list where the values are words, delimited by “ ” and with ending

punctuation removed
● stream.contains(string s)

○ Returns true if string s is contained inside the stream
● string.toStream()

○ converts a string to type stream

5. Sample Code
The following code finds every third occurance of the word “very” in a stream and replaces it
with a synonym for it. This is an example of something that could be useful for preventing the
overuse of common words in writing.

5

for (3 word in stream) {

if word == "very" { word = "extremely"; }

}

Make each word uppercase:

for (word in stream) { word = word.upper(); }

Returns the intersection of words:

def stream sharedWithConstitution (stream StreamA) {

stream const = "We the People of the United States, in Order to

form a more perfect Union...";

return StreamA / const;

}

To compare common words between a stream A and stream B:

def list compareStreams(stream streamA, stream streamB) {

stream A = "My fun comparison sentence";

stream B = "This is a super long multi paragraph page of text. I'm

gonna go through it sentence by sentence. Using the function

below. You'll see!";

list my_union_lists = A*B;

return my_union_lists;

}

Modifies stream to contain the first x(number) sentences in the stream:

def stream removeAfter(stream StreamA, int number) {

return StreamA % number;

}

References
https://docs.oracle.com/javase/7/docs/api/
https://docs.python.org/3/c-api/index.html

https://docs.oracle.com/javase/7/docs/api/
https://docs.python.org/3/c-api/index.html

