
SMAP Project Proposal
Tushar Arora - ta2673
Andrew Magid - aam2302
Swapnil Paliwal - sp3911
Emily Sillars - ems2331

1. Description/Overview
Sections: Motivation, Key Aspects of language
This is a C-like language that is statically typed with the ability to have dynamically
typed arrays. We call these arrays polymorphic lists (see section 2.12 below) and are a
foundational building block of the language. Strings are implemented using monotypic
character lists and allow for very easy string manipulation. This allows text-based games
to be created very easily.

We introduce the probability structure that allows the code to execute
nondeterministically and efficiently facilitate randomized gameplay. We also introduce
function counters which will enable a function only to execute a certain number of times.
This allows for the simplification of code logic and has security benefits for one-time run
functions.

SMAP is a string manipulation language with probability-based primitives designed to
make ASCII animation and command line games easier to code.

2. Syntax/Language Details
Primitives, structures, premade types, var declaration, functions, control flow, ex. of
library functions, keywords, comments, operators

2.1 Data types

Type Description

int integer

char character

1

boolean true, false. syntactic sugar for 1 or 0

string string literal, dynamically sized

prob Constant integer between 0 and 100
representing probability as a percentage

struct <Name> {<type, fieldName>*}; User-defined type containing fields

void F (<type><argName>...) A function that takes parameters with no
return type

<type> F (<type><argName>...) A function that takes parameters and
returns something

List <type> [<optionalLabel>:<value>...] A dynamic monotypic list

List [<optionalLabel>:<value>...] A dynamic polytypic list

null Uninitialized type

2.2 Structs
Structs are defined in the same way as they are in C: they allow for a
programmer-defined data type which is a fixed memory size that contains primitives
and/or other structs.

struct player{
int health = 100;
int xp;
string name;

};

2.3 String-builder syntax
Strings can be defined with quotes, “aString”, but can also be defined with the following
square bracket syntax, reminiscent of printf in C.

Bracket Syntax Description

[“%e*”, e*] A string in quotes can be mixed with any number of format
characters %e (and their corresponding values e after the comma)
to make a new string.

Format character meaning

2

%s Insert a string

%d Insert an int in decimal

%c Insert a char

Example of equivalent string builder syntax:

// equivalent statements
string s = “Wow Sam, 5 points!”;
string s = [“Wow %s, %d points!”, “Sam”, 5];

2.4 Operators

Operator/type prob int char bool string Description

+, -, *, / ✓ ✓ Only + for
concatenation

Standard
arithmetic

&, |, ^, ~, <<, >> ✓ ✓ Bitwise
operators

>, <, >=, <= ✓ ✓ ✓ Comparison

==, /= ✓ ✓ ✓ ✓ (deep comparison) Equality

2.5 Operations on Strings, Monotypic Lists, and Polytypic Lists
2.5.1 String Operators
Strings are a case of our more general polymorphic list type. Specifically, they are monotypic
lists of characters. We use syntactic sugar to hide these details from the user, resulting in a
separate string type that is easy to work with.

String Operator Description Mini Example

== Deep comparison “howdy” == “howdy” yields 1

+ Concatenation “Hi” + “hello” yields
“Hihello”

<< : Left shift, with designated filler “..*..” << 2 : ‘E’ yields

3

char “*..EE”

>> : Right shift, with designated filler
char

“..*..” >> 2 : ‘.’ yields
“....*”

^^ : , .. , ; Overlap, with a list of designated
“clear” chars

“---O_O---” ^^
“.........” : “-” yields
“...O_O...”

<Type> Cast from one type to another <int>”123” + 10 yields 133

Example string manipulation program:

list string house = ["*************",
"****_u__*****",
"***/____****",
"***|[][]|****",
"***|[]..|****",
"***'--'''****",
"*************"];

list string bg = [" (O)",
" ",
" ",
" ",
"^^^^^^^^^^^^^",
"^^^^^^^^^^^^^",
"^^^^^^^^^^^^^"];

for(int i = 0; i < house.size(), i++){
//overlap house on top of background,
//where '*' is treated as a clear tile
string row = house[i]^^bg[i]:”*”;
print(“%s\n”, row);

}

Output:

Note that the string overlap operator de-sugars to a function on a monotypic list of characters:

4

list char overlap (list char top, list char bottom, list char clearTiles){
list char overlay = [];
if(top.size != bottom.size)

return overlay;
for (int i = 0; i < top.size; i++){

if (top[i] elem clearTiles)
row.append(bottom[i]);

else
row.append(top[i])

}
return overlay;

}
// house[i]^^bg[i]:”*” is equivalent to overlap(house, top, [‘*’])
// overlap could be made more concise by using a zipwith std lib function

2.5.2 Polymorphic List Operators
List Operator Description Monotypic Polytypic

== Deep comparison ✓

+ Concatenation ✓ ✓

<< : Left shift, with designated filler
value

✓ ✓

>> : Right shift, with designated filler
value

✓ ✓

elem Returns whether the value is an
element of the list

✓

2.6 Built in Functions
The idea is to enable users to achieve standard functionalities without having to re-write the
code again. Further, the aim is to equip developers with efficient methods, thereby writing
optimized codes—our language features following state-of-the-art methods.

Function Description

abs() Returns absolute value of an integer

allElem() Prints all elements of the list to console

ascii() Returns ascii value of input

5

canPerform() Returns a boolean true if two input types are compatible

ceil() Returns a ceiling value of a number

concat() Returns concatenation of two strings

currElemType() Returns the current element type of the list

funcCount() Returns an int specifying execution count of a given function

floor() Returns floor value of a number

isCompDiv() Returns a boolean true if two numbers are divisible

inRange() Returns an int in the range

isFuncExec() Returns a boolean true if a function can be executed now

isEmpty() Returns a boolean true if a string or a list is empty

isSortable() Returns a boolean true if the list contains either a string or an int

len() Returns the length of a string

listLen() Returns the length of the list

ofType() Returns the type of an element

print() Prints object to console

probCount() Returns the sum of all the probabilities

probDist() Creates a probability distribution of a given type

rand() Returns a random number in range [0,2^31)

rangeList() Returns the range of the list

randGraffiti() Returns a random string sequence forming a graffiti

randomize() Returns a randomized list

regex() Returns a boolean of true if regex matches

6

2.7 Comment

Comment Type Description

// A single line comment

/* */ A multi line comment

2.8 Keywords
“prob” keyword is applied to a type that creates a probabilistic version of that type.
When a probabilistic type is evaluated, it returns one out of a group of possible values.
Using the prob keyword requires the following syntax:

prob <type> <varid> = { <prob>:<type>,* }
Where the sum of the prob
primitives inside the block must
add up to 100.

prob char eyeball = {40:’O’, // big eye
25:’^’, // happy eye
15:’=’, // closed eye
20:’*’ // star eye };

while(...){
char eye = eyeball; //value changes each loop execution
print([“%c_%c\n”, eye, eye]);

}
// each execution of the while loop, one of four
// faces will be printed with following frequency:
// 40% of the time: “O_O”
// 25% of the time: “^_^”
// 15% of the time: “=_=”
// 20% of the time: “*_*”

7

We can use this to probabilistically call functions too.

void callBoss(){
//do boss stuff

}

void callMinion(){
//do minion stuff

}

prob void enemy = { 50: callBoss(),
50: callMinion()};

enemy();

2.9 Control Flow
- if, elif, else
- switch, case
- continue, break
- for loops, while loops

2.10 Basic IO
Basic IO will be included using C’s -ncurses library

- Start screen
- Enable/disable typing echo
- Get line
- Get char
- Get char (immediately, do not wait for user to hit enter)

2.11 Functions
Functions are defined in the following order: return type, function name, arguments
encased in parentheses, curly braces.

int gimmeNum(int num){
return num

}

2.11.1 Function Counters
Function counters are an optional parameter that allow a function to be run only a
specified number of times from the start of program execution.

8

The functions follow an execute and kill strategy, which runs once or a given
number of times and exits the application. Further, once the function has
exhausted the count, no action will occur.

int 1 gimmeNum(int num){

return num
}

A use case is to use a function as an init method which should only be called once
for the entire lifetime of the program. For example:

void 1 generateEnemy() {
EnemyCurrent.enemyCount = inRange(75,90)
}

while(current.level == 5){
generateEnemy()
//Some other stuff

}

2.12 Polymorphic Lists

Pablo Picasso is often misquoted, “good artists copy, but great artists steal”. Polymorphic
lists are a construct designed to be a compromise between the way many statically and
dynamically typed languages store data by pulling from the designs of both.

In the static case, let’s consider how a C program would define an array.

//c code snippet

int arr[10]; //statically sized int array of size 10

arr[0] = 1; //legal

//arr[1] = 'a'; //illegal because element must be of type 'int'

int *arr = (int *) malloc(sizeof(int)) * 10); /* dynamically sized

array. we can continue to increase the size by malloc-ing*/

We can see that in either the static or dynamic C array definition, the entire array must
contain one type only, that is of type int.

9

Dynamically typed languages allow for more flexibility.

#Python snippet

a = [1, 'a', True, [1, 2, "hello world"]] # legal

We can store any type inside Pythonic lists, including other nested lists! The biggest
problem is the lack of type safety, leading to a potential runtime error if a function is
called on an incompatible type within the list.

Our list allows for a generalizable way to store data like a Python list, but with the
option of C-like type safety. Let’s take a look at how we define this in our language
and the additional features we include that allow for data to be accessible in a
similar way to an array, a class, or both.

// polytypic list

int y = 100;

list example_list = [x_cord: 50, y_cord: 100, "hello world", levels:

[one: 1, two: 2, three: 3]];

example_list.append('z');

What’s going on here? We define our list with the list keyword and we initialize it
using square brackets. Similarly to Python, we can include data of any type (even
developer-defined structs and other lists!) hence the name, polytypic.

There are two ways to access data from a list: by index or by label. By index, a
programmer could type example_list[2] which would return “hello world”.
By label, a programmer could type example_list.y_cord and the program would
return 100. Similarly, example_list.levels.three would return 3. These can
also be combined: example_list.levels[2] would also return 3. Labels are like
keys and must be unique within a list (like a Python dictionary or a C struct).

Interestingly, because we can hold any data, we can include function calls. We can
include functions inside lists and be able to pull them out to call on anything else we
would like. We use the fn keyword to denote that the following is a function name and
not a variable name.

string foo(string input){

return input;

10

}

list another_list = [“test”];

another_list.append(foo: fn foo);

// the following calls are equivalent

foo(“test”);

foo(another_list[0]);

another_list.foo(another_list[0]);

another_list[1](another_list[0]);

So far we looked at polytypic lists that can hold any data type. However, we often are
manipulating arrays of only integers, chars, or other programmer defined types.
Monotypic lists only allow values of a given type to be added to the list.

// monotypic list example

int x = 2; int y = 3;

list int integer_list = [1, two: x, y, four: 4];

/* integer_list.append("this is an illegal operation and will be

caught at compile time"); */

list list int list_of_integer_lists = [[1,2,3], [4,5,6], [1,2,3]]; /*

legal */

list list char illegal_list = [[‘a’,’b’, ’c’], [‘d’, ’e’, ’f’],

[1,2,3]]; // not legal! compile time error

The list keyword is followed by the int keyword which denotes a monotypic list and
will only allow elements of type int. Most importantly, this means that type safety is
ensured at compile time, not runtime! Monotypic lists are therefore not required, but give
the developer the tools for type safety which can prevent many errors. The type need not
only be primitives. A programmer-defined struct or nested list structure are all fair game.

A natural question to ask at this point is what will happen with code that looks like this?

//polytypic list declaration and initialization

list example = [];

if (getKey() == LEFT_ARROW){

example.append(13);

}

11

else{

example.append("this is a string");

}

int x = example[0]; //this is undefined behavior

What if the user inputs any key other than the left arrow key? This behavior is undefined
and will result in a runtime error. There are other examples of runtime errors. What if we
append a label and a value and then reference it by the wrong label? What if we append a
label that already exists within the list? Dynamic typing begets runtime errors and there is
no way to get around this.

We provide the tools for type safety and it is up to the developer to make use of them.
This includes keeping track of the labels appended and making sure they are all unique.
However, if we define a monotypic list such as list int example = []; we will
ensure that a line like example.append(“this is a string”) will result in a
compile time error rather than a runtime error which is preferable.

2.12 ncurses Library

● Ncurses is a library that acts like a wrapper to improve the terminal capabilities
● It is mostly used to create a text based User Interface (UI) to help users create a

GUI-like application software that runs under a terminal emulator.
● The packages required to install the library are -

○ libncurses5-dev : Developer’s libraries for ncurses
○ libncursesw5-dev : Developer’s libraries for ncursesw

● The API that we intend to use for our program is -
○

WINDOW* win = initscr; // this enables the curses mode

keypad(); // It enables the reading of function keys like F1, F2, .

//arrow keys etc.

raw(); //used to disable line buffering - usually the terminal . . .

//driver buffers the characters a user types until a new line .

//or carriage return is encountered

cbreak(); //used to disable line buffering (same thing as raw())

halfdelay(3); //similar to cbreak() and so the characters typed are .

12

//immediately available to the user

curs_set(0) // this API is used to hide the cursor

printw(); // same thing as printf in C

refresh(); // print everything from the printw calls to the .

. //console

int name = getch(); //getting the character

endwin(); // this exits the curses mode

Some Keypad Codes:

KEY_UP

KEY_LEFT

KEY_RIGHT

2.12 Linking an external library
● External libraries are not usually known by ocaml build so they have to be written

at the root of the project in the myocamlbuild.ml file.
● Example of adding external libraries ablgl and lablglut to the project.

open Ocamlbuild_plugin

open Command

let () =

dispatch begin function

| After_rules ->

ocaml_lib ~extern:true ~dir:"+lablGL" "lablgl";

ocaml_lib ~extern:true ~dir:"+lablGL" "lablglut";

| _ -> ()

end

13

References

https://www2.ocaml.org/learn/tutorials/ocamlbuild/Using_an_external_library.html

https://tldp.org/HOWTO/NCURSES-Programming-HOWTO/

14

https://www2.ocaml.org/learn/tutorials/ocamlbuild/Using_an_external_library.html
https://tldp.org/HOWTO/NCURSES-Programming-HOWTO/

