
MX

By: Aaron Jackson (arj2145), Wilderness Oberman (wo2168),
Rashel Rojas (rdr2139), Mauricio Guerrero (mg4145)

1. Introduction
Our proposed language, MX, aims to offer programmers an intuitive and efficient means of creating and
manipulating matrices.

Although matrices are robust and powerful mathematical structures that are paramount to various fields of
Computer Science - attempting to navigate them often results in unnecessary complexities. Moreover,
most typical programming languages lack the coherent means of handling matrices without the additional
importation of an outside library of some sort. Thus, MX seeks to make matrix processing all the more
simpler through providing a streamlined experience of maneuvering matrices.

MX seeks to overhaul the current matrix handling experience by providing one that should be both
intuitive and familiar to programmers. MX aims to be intuitive to programmers through its inclusion of
the matrix as a data type. By doing this, it hopes to offer users an uncomplicated means of handling
matrices that is not too dissimilar from how they might operate more common data types. Moreover, as
much of MX follows typical C and Java syntax, it hopes to provide programmers a familiar coding
experience that is effortless to pick up on. Programmers will be free to decide for themselves how
involved or peripheral they would like MX’s matrix handling capabilities to be in their work. Lastly, MX
will contain a vigorous built-in library of functions which aims to efficiently automate even the most
complex matrix operations. Through implementing standard matrix operations by means of its inclusion
as a data type, and providing more intricate manipulations as built-in functions, MX will supply
programmers with the components necessary to construct their own complex matrix related functions.

2. Language Syntax
2.1 Scope
{} for functions, blocks, classes
; for end of line

2.2 Comments
for single line comments
/* for multi line comments */

2.3 Conditional
if(...) {

} elif(...) {

} else {

}

2.4 Loops
for(int i = 0; i < 5; i++) {

while(conditional){
break;

}
continue;

}

2.5 Variable Declaration
int i = 3;
double j = 4.0;
char star = ‘a’;
String string = “shark”;

There are two ways to declare a Matrix object:
Matrix m = [r1, r2, r3, ...]
Here, we create a matrix with values where r1, r2,... represent rows (1D arrays) of the

matrix.

Matrix n = datatype matrix(int m, int n)
This creates an empty matrix with the dimensions numRows by numCols. Its elements are of

type datatype (int, double, or float). Sets elements to default values (0 for a matrix of integers, etc.).

Note: Matrices will be stored on the heap.

N[row][column] # gives you an element in the matrix

2.6 Data Types
int k;
double g;
float f;
char a;
String plt;
Matrix m;

2.7 Arithmetic Operators

Operators Description Examples

+ Arithmetic Addition 1 + 3 # literals
x + 8 # var and lit
x + z # two var sum

- Arithmetic Subtraction 1 - 3 # literals
x - 8 # var and lit
x - z # two var sub

/ Arithmetic Division 1 / 3 # literals
x / 8 # var and lit
x / z # two var div

* Arithmetic Multiplication 1 * 3 # literals
x * 8 # var and lit
x * z # two var multi

% Modular Arithmetic 1 % 3 # literals
x % 8 # var and lit
x % z # two var sum

++x Preincrement Operator int x = 0;
++x;

x++ Postincrement Operator int y = 1;
y++;

The +, -, and * operators can also be used for addition, subtraction, and multiplication of matrices.
The * operator will be used for matrix-matrix multiplication and scalar-matrix multiplication.

2.8 Relational Operators

Operator Description Examples

== Equal to int x = 3;
if (x == 3) {}

!= Not Equal int y = 3;
if(y != 4) {}

> Greater Than if(4 > 5) {}

< Less Than while(5 < 14) {}

>= Greater Than Or Equal To while(i >= 0) {}

<= Less Than Or Equal To while(f <= 10) {}

2.9 Logic Operators

Operator Description Example

&& Logical and while(x>3 && y>4){}

|| Logical or while(x>3 || y>4){}

! Logical negation while(x>3 && y!=4){}

2.10 Functions
Declaration:
datatype foo(datatype parameter1, …) {

}

Call:
foo(parameter1, ...)

2.11 Built-In Functions

Function Return type Description

matrix(int m, int n) Matrix Returns an empty mxn matrix

numRows() int Returns the number of rows in a
matrix

numCols() int Returns the number of columns
in a matrix

zeros(int n) Matrix Returns an nxn matrix filled
with zeros of type integer

ones(int n) Matrix Returns an nxn matrix filled
with ones of type integer

print(parameter) void Prints the value passed in
*Prints a Matrix parameter row

by row

addRow(int index, datatype[]
arr)

bool Adds a row specified by
datatype[] arr (1D array) to the
matrix at the row index index.
Returns true if possible, else

false.

addCol(int index, datatype[] arr) bool Adds a col specified by
datatype[] arr (1D array) to the

matrix at the column index
index. Returns true if possible,

else false.

rank() int Returns the rank of a matrix

identity(int n) Matrix Returns an nxn identity matrix

rref() Matrix Returns the rref of a matrix

transpose() Matrix Returns the transpose of a
matrix

dotProduct(Matrix n) int, double, or float Returns the dot product of a
matrix and matrix n

rotate(double angle) Matrix Returns the rotation of a matrix
about an angle

reflectX() Matrix Returns the reflection of a
matrix over the x-axis

reflectY() Matrix Returns the reflection of a
matrix over the y-axis

reflectYX() Matrix Returns the reflection of a
matrix over the line y=x

reflectO() Matrix Returns the reflection of a
matrix about the origin

reflectNegX() Matrix Returns the reflection of a
matrix over the line y=-x

shearH(int k) Matrix Returns the horizontal shear of a
matrix by a factor of k

shearV(int k) Matrix Returns the vertical shear of a
matrix by a factor of k

Note: Many of these functions are called as follows:
m.addRow(3, [3, 2, 1]) # adds a row at index 3 of Matrix m

These functions include: numRows(), numCols(), addRow(), addCol(), rank(), rref(), transpose(),
dotProduct(), rotate(), reflectX(), reflectY(), reflectYX(), reflectO(), reflectNegX(), shearH(), shearV().

Before these operations are carried out, the compiler will first check that they can be done on those
matrices given their dimensions. Throws an error otherwise.

2.12 Reserved Words
break, continue, bool, int, double, float, char, String, Matrix, if, elif, else, new, return, void, while, for,
true, false, null, return

3. Sample Algorithms

3.1 Basic syntax: example of a user defined function for determining the greatest common divisor of two
integers

int gcd(int x, int y)
{

example of a simple user-defined function
while (x != y)
{

if (x > y)
x -= y;

else
y -= x;

}
return x;

}

int main ()
{

int x = 3;
int y = 15;
int z = gcd(x, y);
printf("%d", z); # prints 3
return 0;

}

3.2 Simple program illustrating built in declaration and manipulation of matrices in our language

int main()
{

Matrix m1 = [[0, 1], [2, 3]; # matrix declaration
m1.print();

prints the following

0
2

1
3

Matrix m2 = [[3, 4], [4, 5]]; # matrix declaration
m2.print();

prints the following

3
4
4
5

Matrix m3 = m1 * m2;
m3.print();

prints the following

4
1
8

5
2
3

Matrix m4 = m1.transpose() + m2;
m4.print();

prints the following

3
5

6
8

return 0;
}

3.3 C-program approximation of matrix manipulation

#include <stdio.h>
#include <stdlib.h>

void add(int m[2][2], int n[2][2], int sum[2][2])
{

for(int i = 0; i < 2; i++)
for(int j = 0; j < 2; j++)

sum[i][j] = m[i][j] + n[i][j];
}

void multiply(int m[2][2], int n[2][2], int res[2][2])
{

for(int i = 0; i < 2; i++)
{

for(int j = 0; j < 2; j++)
{

res[i][j] = 0;
for (int k = 0; k < 2; k++)

res[i][j] += m[i][k] * n[k][j];
}

}
}

void transpose(int matrix[2][2], int trans[2][2])
{

for (int i = 0; i < 2; i++)
for (int j = 0; j < 2; j++)

trans[i][j] = matrix[j][i];
}

void print_matrix(int matrix[2][2])
{

for(int i = 0; i < 2; i++)
{

printf("[");
for(int j = 0; j < 2; j++)
{

printf("%d", matrix[i][j]);
if(j < 1)

printf("\t");
}
printf("]\n");

}
}

int main()
{

int m1[2][2] = {{0, 1},{2, 3}};
int m2[2][2] = {{3, 4},{4, 5}};
int m3[2][2];
print_matrix(m1);
printf("\n");
print_matrix(m2);
printf("\n");
multiply(m1, m2, m3);
print_matrix(m3);
printf("\n");
transpose(m1, m3);
add(m3, m2, m3);
print_matrix(m3);
printf("\n");

return 0;
}

