
1

Vowel: Language Reference Manual
The Way for Wordsmiths

Name UNI
Coby Simler zys2102
Aidai Beishekeeva ab5248
Lex Mengenhauser am4958
Vikram Rajan vjr2123

Vowel: Language Reference Manual 1
Introduction 2
Data Types 2

Primitive Data Types 2
Data Structures 2
Type Conversion and Casting 2
Structs 3

Variables 3
Comments 4

Operators 4
General operators 4
String operators 4

Functions 6
Built in functions 7

Scope 7
Lexical Conventions 7

Keywords 7
Expressions 7
Unary expressions 8
Conditional x operators 8

Sequencing and Control Flow 8
Sequencing 8
Loops 8

Example Program 9

2

Introduction

Vowel is a high-level, imperative, statically-typed programming language intended to be used to
iterate over, operate on, and manipulate large text inputs. To do this, Vowel introduces an
extended collection of string operators and supports a novel control flow syntax tailored for text
processing. The language has Python-style control flow and function definition syntax with
Java-like typing. Vowel enables programmers to quickly analyze, manipulate, and map functions

Data Types

Primitive Data Types

Type Description Example Declaration.

int A 32-bit integer value. int i = 42;

string String is a sequence of one or more
consecutive ASCII characters surrounded
by quotation marks (“).

string vowel = “consonant”;

bool An 8-bit boolean value. bool columbia = true;

Data Structures

array A type-specific array of ASCII characters of
predetermined length.

int ex[5] = [1,2,3,4,5];

Type Conversion and Casting

The Vowel language does not allow for any implicit type promotion or casting. Instead,
programmers may use the below methods to express a given type to another desired type.

String → Int
● Strings may be converted into ints via the int(x) command. The string input into this

command must only consist of characters between 0-9 (i.e. regex -?([‘0’-’9’])+). Leading

3

zeros are removed from the input expression. For example, int(“145”) would evaluate to
145.

Int → String
● Ints may be converted to strings via the str(x) command. The int input is returned as a

string represented semantically by ASCII characters. For example, str(42) would
evaluate to 42.

Bool → String
● Booleans may be converted to strings via the str(x) command. The bool inputs (either

True or False) are returned as strings, where str(True) returned “True” and str(False)
returns “False.”

Structs

Structs, like in C, are collections of variables under a single data type. Structs
(structures) are declared using the keyword struct and the name of the struct followed by
parenthesis (). Structs in Vowel must be declared with accompanying member variables.
Functions cannot be placed inside of structs, member variables are accessed by the struct
variable name followed by a period and the name of the member variable the programmer
wants to access. Unlike structs in C, Vowel has no concept of a struct identifier or tag; each
struct is treated as a distinct identity regardless of the types of its member variables.

For example, structs can be declared as follows:

struct citation {

string sentence = "To the well-organized mind, death is but the next

great adventure.";

string title = "Harry Potter and the Sorcerer's Stone";

string author = "J.K. Rowling.";

int year_published = 1997;

};

citation.year_published;

→1997

Variables

Variable Naming
Variable names are sequences of alphanumeric characters (letters and digits), including the
underscore ‘_’. Variable names may start with an underscore, but not with a number, and cannot
include any symbols. Furthermore, no variable can have the same name as any reserved word.

4

Variable Declaration
To declare a variable, first state the data type, then an appropriate variable name followed by
the assignment operator, ‘=’, and then the associated value. Declared variables must be
initialized in place; Vowel does not allow declaration without initialization.

int x = 4;
string temp = “Hello World!”;

Comments
All comments will be opened with /* and will comment out everything until a closing */ is found. If
no closing */ is found, an error will be thrown. There is no single-line comment syntax, as
everything will follow this open and close comment convention.

/* Single-line comment */

/* Multi-line comment
This is still commented */

Operators

General operators

= assignment integers, strings, bool
+ sum integers, strings
- difference integers, strings
* product integers
/ quotient integers
% modulo integers
+= increment integers, string
-= decrement integers

String operators

Plus Operator

5

For ints, the plus operator will return the sum of the two values. For strings, the plus operator ‘+’
when used on two strings will concatenate them and return the combined string.

string first = “Hello ”;
string second = “world!”;
string new = first + second;
print(new); // prints: Hello World!

Minus Operator

For ints, the minus operator will perform the difference of the numbers as an int,
The minus operator ‘-’ produces an array of words that appear in the first string but not the
second string. The order of the output will follow the order of how those words appear in the first
string.

string first = “this is a random sentence.”;
string second = “another random string is this”;
string result[] = first - second;
print(result); // prints: [“a”, “sentence”]

Slice Operator
The slice operator ‘[“delim”; start: end]’ when used on a string produces the subset of the
original string based on the indices in the brackets and the delimiter provided. This operator
takes three parameters: a delimiter, start index and end index. The first parameter, delimiter, will
be whatever the user defines and describes how the string will be split. The second parameter
describes the starting index, where 0 represents the first word in the string (inclusive), and the
third parameter describes the ending index and is not inclusive. The operation will return as
many results as possible if the index is larger than the number of results. The end value can be
left out, in which case the operator returns all values until the end of the input.

string varname = "This is a random sentence with some words.";
string sliced = varname[" "; 1:4];
print(sliced); // prints: “a random sentence”

Union Operator
The union operator ‘|’ produces an array of all words that appear in either or both strings and
removes multiple occurences. In this case, words are defined as consecutive strings of ASCII
text separated by a combination of any punctuation and spaces.

6

string first = “this is a random sentence.”;
string second = “another random string is this”;
string result[] = first | second;
print(result);
// prints: [“this”, “is”, “a”, “random”, “sentence”, “another”,
“string”]

Intersection Operator
The intersection operator ‘&’ produces an array of words that appear in both strings. The order
of the strings in the array will be the same order as they appear in the first string.

string first = “this is a random sentence.”;
string second = “another random string is this”;
string result[] = first & second;
print(result); // prints: [“this”, “is”, “random”]

Functions
Functions in Vowel are run sequentially. The syntax of a function definition is to have the return
type of the function, the name of the function, followed by parentheses containing zero or more
comma separated arguments formatted as type name pairs. Functions that do not return
anything are type void which is a reserved keyword in Vowel. Arguments in Vowel are passed
by value meaning a copy of them is made to be passed to the function. The body of the function
is contained by curly braces that open after the function argument’s closing parenthesis, and
close after the last line of the function definition.

Program definition that takes a string in as an argument and prints it out:

string myString = "Hello World!";
string myFunc(string s){ /*program definition*/

return s;
}

Functions are called by using the function name followed by parenthesis including the required
number of arguments dictated by the function definition. Vowel does not support functionality to
include more arguments than dictated in the function definition. Calling the function above looks
like:

7

myFunc(myString);
→ Hello World!

Variables can be set to contain the results of functions so long as they have the same type as
the functions return value. Using the examples above, this looks like:

string w = myFunc(myString);
print(w);
→ Hello World!

Built in functions
● len() - used to find the length of a string

Scope
Scope is bounded by the use of curly braces {} as Vowel is a block structured language. The
lifetime of a specific variable or function is determined by the scope of the block it is within.

Lexical Conventions

Keywords

Keywords are lower-case sequence of characters reserved for use in Vowel

int, bool, string, array, for, if else, struct, continue, break,
print, return, true, false

Expressions

An expression is a series of operations and function calls applied to operands. It may consist of
one or more operands and zero or more operators.

Example:

3 + 4; int x = int a = 3; x + a; 10;

8

Unary expressions
Unary expressions are applied to one operand.

! negate bool
- negative integers

Conditional x operators

> greater than integers, strings
< less than integers, strings
>= greater than or equal integers, strings
<= less than or equal integers, strings
== equal integers, strings, arrays, bool
!= not equal integers, strings, arrays, bool
and bool
or bool

Strings
Like in Python, the <, >, <=, >=, ==, and != operators compare the input strings alphabetically
and return a boolean value.

string a = “a”;
string b = “b”;
bool x = a < b; /* true */

Sequencing and Control Flow

Sequencing
Expressions in Vowel are separated by the “;” character and are evaluated left to right. Every
sequence in Vowel must terminate in a “;” character.

Loops
Vowel offers two types of loops: while loops and for loops.

While loops are constructed precisely like while loops in C:

9

while (condition == true){

/* do something */

}

For loops have two types of constructions: explicit sequencing and implicit sequencing.

Explicit Sequencing:
For loops with explicit sequencing are written like Java or C. This gives the developer the

flexibility to define precisely the terms of the For loop. The syntax is in the structure:

for (initialize variable ; conditional expression; post-loop expression) { /* body of loop */ };

For example:

for (int i = 0; i < 42; i++) {

print(i);

}

Control flow keywords:
The continue keyword forces the next iteration of the loop to take place. In for loops with explicit
sequencing, this leads to the conditional statement being evaluated. In for loops with implicit
sequencing, this leads to the next valid element in the sequence (if there is one) to be loaded
up.

The break keyword forces the termination of the loop altogether, leading to the end of the loop
expression.

Example Program

string getLongestSharedWord(string a, string b){

string intersection[] = a & b;

int longestWorldLen = 0;

int index = 0;

for (int i = 0; i < intersection.length; i++){

int wordlen = len(intersection[i]);

if (wordlen > longestWorldLen){

longestWorldLen = wordlen; index = i;

}

}

10

return intersection[index];

}

string grimmsFirstEdition = "Mr. Fox, who had nine tails, surreptitiously

climbed out of the grated window and into the

front yard.";

string grimmsSecondEdition = "Mr. Fox had nine tails—a feature which gave

him great pride. He secretly slipped out of

the slanted window frame into the garden.";

string first_sliced = grimmsFirstEdition["surreptitiously";0:]; /*

surreptitiously climbed out of the grated window and into the front yard.

*/

string second_sliced = grimmsSecondEdition["secretly";0:]; /* secretly

slipped out of the slanted window frame into the garden. */

string lsw = getLongestSharedWord(first_sliced, second_sliced);

print(lsw); /* prints “window” */

