
1

Pocaml Language Reference Manual
Feitong Qiao, Yiming Fang, Yunlan Li, Peter Choi

Abstract—This document describes the Pocaml language’s
syntax. The Pocaml language is a functional language that
implements the core subset of the OCaml language, with type
inference and many features from OCaml’s standard library.

I. LEXICAL ASPECTS

A. Blanks
Characters including space, tab, carriage return (\r), line

feed (\n), and form feed are considered blanks in Pocaml.
They serve to separate the program into tokens.

B. Comments
Comments begin with the 2-character sequence (* and end

with the 2-character sequence *). Comments do not occur
within a string or character literals. In nested comments, all
opening (* should be closed with a corresponding *).

(* this is a comment *)
(* this is a
multi-line
comment *)
(* this is a (* nested *) comment *)
(* this is not (* a valid comment *)

C. Identifier
Identifiers are sequences of letters, digits, (the underscore

character), and ’ (the single quote), starting with a letter or
an underscore. Letters contain the lowercase and uppercase
alphabets from ASCII. In many places, Pocaml distinguishes
between capitalized and non-capitalized identifiers. Under-
score is considered a lowercase letter for this purpose.

ident ::= (letter|){letter|0...9| |’}
uppercase-ident ::= (A...Z){letter|0...9| |’}
lowercase-ident ::= (a...z|){letter|0...9| |’}

letter ::= A...Z|a...z

D. Integer literals
An integer literal is a sequence of one or more digits,

optionally preceded by a minus sign. Integer literals are in
decimal.

integer-literal ::= [-](0...9){ 0...9 }

E. Boolean literals
A boolean literal is either true or false. They have the

type Bool.

bool :

true

false

F. Character literals

Characters include the regular set of characters and the
escape sequence, which serve to delimit characters.

char-literal ::= regular-char | escape-sequence

escape-sequence ::= \(” |′| n | t | b | r | space)

II. EXPRESSIONS

A. Lvalues

An lvalue represents a storage location that can be assigned
a value: variables and parameters.

lvalues :

id

B. Return values

The return value of a let-in expression is the value
after the in. if-then-else and other functions, including
operators, have the return value equal to the result of the
corresponding computation.

C. List Literals

Array expressions can be defined as [e1; e2;...;en]
and must be explicitly typed. For example, one may say
let lst: int list = [1;2;3]. Pocaml supports the
efficient appending of the head element e1 to the tail list [e2;
...; en], using the operator ::, as well as the less efficient
concatenation between two lists using the operator @.
Furthermore, pattern matching is possible with lists as follows

D. Lambda Functions

The lambda functions are used in Pocaml using the keyword
fun by specifying the operations on the function input. They
can be used as expressions and passed as argument into other
functions.

E. Function Calls

A function application is a prefix expression id arg1
arg2 ... with zero or more blank-separated expression
parameters. Functions applications are curried. The values of
the parameters are strictly evaluated from left to right and
bound to the function’s formal parameters using conventional
static scoping rules.

Partial function applications are supported and a function
that takes in the remaining arguments is returned.

2

F. Operators

The binary operators are +,−, ∗, /,=, <>,<,>,<=, >=
,&&, ||.

A leading minus sign negates an integer expression.
Parentheses group expressions in the usual way.
The binary operators +,−, ∗, / require integer operands and

return an integer result.
The binary operators =, <>,>,<,>=, <= compare the

operands, which may be either both integer or both string and
produce true if the comparison holds and false otherwise.
String comparison is done using normal ASCII lexicographic
order.

The binary operators &&, || do the usual logical AND and
OR on two boolean values.

Unary minus has the highest precedence followed by ∗, /,
then +,−, then =, <>,>,<,>=, <=, then &&, then ||.

G. Flow Control

The brancing expression if expr1 then expr2 else expr3
evaluates to expr2 if expr1 evaluates to true. Otherwise, it
evaluates to expr3. expri is an expr and is used here simply
for ease of referring to different expressions that appear in the
brancing expression.

H. Let

The expression let declaration in expr produces a set of
name to value bindings that are accessible within expr-list. The
let expression evaluates to the value of the last expression in
expr-list.

I. Pattern Matching

A pattern matching expression is in the form of match expr1
with pattern-matching, where pattern-matching is a sequence
of clauses in the form of pattern −→ exprV alue, separated
by pipes |. The value of the entire pattern matching expression
is the exprV alue of the first pattern that expr1 matches.

III. DECLARATIONS

A Pocaml program is a sequence of declarations.

declaration :

lvalue = expr

function-declaration

type-declaration

A. Let declaration

The declaration let declaration is used only at the top level.
It produces a name to value binding that can be accessed
globally within the same file.

B. Types

Pocaml has predefined types including int, bool,
char New types can be defined using the following context
free grammar rules.

type-declaration :

type type-id = type

type :

type-id

array of type-id

C. Functions

function-declaration :

let id argsopt = expr

let rec id argsopt = expr

let id argsopt : type = expr

let rec id argsopt : type = expr

args :

id

(id : type)

param param

The last two forms is a function declaration of the first two
with return type annotation. The first two form declares a
function named id that takes in zero or more parameters
defined by param; expr is the body of the function. The scope
of the function arguments is expr. The rec keyword defines a
recursive function whose id is available in the scope of expr.

The following function declarations are equivalent and both
functions have type int→ int→ int.

let fun1 (a: int) (b: int) = a + b
let fun2 (a: int) = fun (b:int) → a + b

IV. STANDARD LIBRARY

print(s : string)
Print the string to the standard output.

map : (‘a −→ ‘b) −→ ‘a list −→ ‘b list
Apply a function to each element of a list to return a new list
with the original type.

iter : (‘a −→ unit) −→ ‘a list −→ unit
Call a function with each element of a list.

append : ‘a list −→ ‘a list −→ ‘a list
Return a new array containing the concatenation of two arrays

fold left : (‘a −→ ‘b −→ ‘a) −→ ‘a −→ ‘b list −→ ‘a
fold left f lst init applies function f on the current
accumulator (initially init) and each element in lst,

3

going from left to right. It returns the current accumulator
after going through the whole list.

fold right : (‘a −→ ‘b −→ ‘a) −→ ‘a −→ ‘b list −→ ‘a
fold right f lst init applies function f on the current accumu-
lator (initially init) and each element in lst, going from right
to left. It returns the current accumulator after going through
the whole list.

V. EXAMPLE

This example demonstrates how to implement Euclid’s
algorithm for finding the Greatest Common Denominator
(GCD), printing the result after finding the answer. This code
snippet showcases many features of our ls, such as let-in
declaration, recursive function call, type specification, and
control flow statements.

let rec gcd (a : int) (b : int) : int =
if b = 0 then a
else gcd b (a mod b)

let print_gcd (a : int) (b : int) : () =
print_endline (string_of_int (gcd a b))

