
MX

Language Reference Manual

By: Aaron Jackson (arj2145), Wilderness Oberman (wo2168),
Rashel Rojas (rdr2139), Mauricio Guerrero (mg4145)

1. Introduction

Our proposed language, MX, aims to offer programmers an intuitive and efficient means of
creating and manipulating matrices.

Although matrices are robust and powerful mathematical structures that are paramount to various
fields of Computer Science - attempting to navigate them often results in unnecessary
complexities. Moreover, most typical programming languages lack the coherent means of
handling matrices without the additional importation of an outside library of some sort. Thus, MX
seeks to make matrix processing all the more simpler through providing a streamlined experience
of maneuvering matrices.

MX seeks to overhaul the current matrix handling experience by providing one that should be
both intuitive and familiar to programmers. MX aims to be intuitive to programmers through its
inclusion of the matrix as a data type. By doing this, it hopes to offer users an uncomplicated
means of handling matrices that is not too dissimilar from how they might operate more common
data types. Moreover, as much of MX follows typical C and Java syntax, it hopes to provide
programmers a familiar coding experience that is effortless to pick up on. Programmers will be
free to decide for themselves how involved or peripheral they would like MX’s matrix handling
capabilities to be in their work. Lastly, MX will contain a vigorous built-in library of functions
which aims to efficiently automate even the most complex matrix operations. Through
implementing standard matrix operations by means of its inclusion as a data type, and providing
more intricate manipulations as built-in functions, MX will supply programmers with the
components necessary to construct their own complex matrix related functions.

2. Lexical conventions
a. Comments

i. The # character begins single-line comments
ii. /* begins a multi-line comment and */ terminates multi-line comments.

b. Identifiers
i. Identifiers are sequences of letters and digits, in which the first character has to

be a letter. Inclusive of lowercase and uppercase letters. Identifiers may contain

underscores. The type of the identifier as well as its initial value must be
specified upon declaration of the identifier. An identifier may be declared with a
null value.

c. Key words
i. The following identifiers are reserved and may not be used otherwise

● int ● bool

● float ● String

● continue ● break

● return ● Matrix

● if ● elif

● else ● new

● void ● while

● for ● true

● false ● null

● pi

ii. The following identifiers are reserved for function names. A function may not be
declared using the following keywords

● main ● matrix

● numRows ● numCols

● shearV ● one

● print ● addRow

● addCol ● rank

● identity ● rotate

● dotProduct ● reflectY

● reflectX ● reflectO

● reflectYX ● shearH

● reflectNegX

d. Strings
i. A sequence of zero or more characters (lowercase/upper case), digits, escape

sequences enclosed in double quotes. Contains null character at end to indicate
end of string. Strings with only one character are still considered to be variables
of type String and not type char.

3. Primitive Types
a. Types

i. int - signed integer type, 4 bytes
ii. float - signed floating-point type, 8 bytes

iii. bool - has the value of true/false, 1 byte
iv. ‘-’ will denote negative numbers (Right-associative)

b. Implicit Casting
i. If there is an operation between an int and float (arithmetic addition, subtraction,

multiplication, division), then cast the int value to a float. This includes elements
of a matrix.

4. Operators
a. Unary Operators

i. expr++
ii. expr--

iii. ++expr
iv. --expr

b. Assignment operator
i. Values may be assigned to variables via the following syntax:

1. Identifier = expr
2. Type Identifier = expr
3. Where the value in expression will be assigned to the identifier

ii. The values of the results of arithmetic operations may also be assigned via the
following syntax:

1. Expr += Expr
a. Assignment by sum

2. Expr -= Expr
a. Assignment by difference

3. Expr *= Expr
a. Assignment by product

4. Expr /= Expr
a. Assignment by quotient

5. Expr %= Expr
a. Assignment by remainder

c. Arithmetic Operators

i. Expr + Expr
1. The result is the sum of the expressions. This operation may only be

performed between expressions of type int and type float. If performed
between an expression of type int and another expression of type float
(i.e. int a + float b), the int is converted to a float and the type of the sum
is of type float.

ii. Expr - Expr
1. The result is the difference of the expressions. The same type

considerations for addition apply.
iii. Expr * Expr

1. The result is the product of the expressions. The same type
considerations for addition apply.

iv. Expr / Expr
1. The result is the quotient of the expressions. The same type

considerations for addition apply.
v. Expr % Expr

1. The result is the remainder from division between both expressions. Both
expressions must be of type int.

d. Matrix Operators
The following section details operators that are specific to MX’s Matrix data type and the
operations that can be performed between multiple expressions of type Matrix and, to a
lesser extent, type int and type float.

i. Matrix +. Matrix
1. The result is the sum of two expressions of type Matrix. This operation

may only be performed between two expressions of type Matrix whose
elements are of type int or float. If the operation is performed between
two matrices where one is of type int and the other is of type float then
the int matrix is cast to float and the resulting matrix is of type float.

ii. Matrix -. Matrix
1. The result is the difference between two expressions of type Matrix. This

operation may only be performed between two expressions of type
Matrix whose elements are of type int or float. The same type
considerations for matrix addition apply.

iii. Matrix *. Matrix
1. The result is the product of two expressions of type Matrix. This

operation may only be performed between two expressions of type
Matrix whose elements are of type int or float. The same type
considerations for matrix addition apply.

iv. Matrix **. Expr
1. This operator indicates scalar multiplication between an expression of

type Matrix and another expression of type int and type float. If a Matrix
is populated with expressions of type int and multiplied by a scalar of

type float, the int expressions are converted to float, and the datatype of
the resulting Matrix is also changed to float. In the converse scenario,
where a Matrix is filled with expressions of float and multiplied by a
scalar of type int, the int is converted to a float and the data types of the
Matrix and its contained expressions remain as type float. Associativity
is irrelevant.

v. Matrix’
1. This operator returns the transpose of a matrix. Return type is Matrix.

e. Relational Operators
The following operators are reserved for comparison between two expressions. Each
operator yields 1 if the comparison is True and 0 if it is false. Comparison between
expressions requires that each expression be of the same type. The last two operators
have lower precedence than the first four.

i. Expr < Expr
ii. Expr > Expr
iii. Expr <= Expr
iv. Expr >= Expr
v. Expr == Expr
vi. Expr != Expr

f. Logic Operators
i. Expr && Expr
ii. Expr || Expr
iii. !Expr

g. Order of Precedence

Precedence Description Associativity

++ --
()
[]
.

Postfix increment and decrement
Grouping or Function call
Array subscripting
Access matrix functions

left-to-right

-
++ --
!
‘

Unary minus
Prefix increment and decrement
Logical NOT
Transpose

right-to-left

* /
*.
**.
%

Arithmetic multiplication and division
Matrix-matrix multiplication,
scalar-matrix multiplication
Modulus

left-to-right

+ -
+. -.

Arithmetic addition and subtraction
Matrix addition and subtraction

left-to-right

< <=
> >=

Less than, less than or equal to
Greater than, greater than or equal to

left-to-right

== != Is equal to, is not equal to left-to-right

&& Logical AND left-to-right

|| Logical OR left-to-right

=
+= -=
*= /=

Assignment
Addition, subtraction assignment
Multiplication, division assignment

right-to-left

, Separates expressions left-to-right

5. Separators
a. Semicolon at the end of every statement (not including end of for/while loop blocks,

if/else statements)
b. Curly braces in for loops, while loops, if/elif/else
c. () [] { } ; , .
d. Ignore whitespace (don’t make it a token)

6. Declarations
a. All variables should be declared with their type specification and initialized value (do not

allow something like int var1;). A variable may be declared with a null value.

b. Declaring primitive types:

i. type var_name = value;

c. Declaring Matrix objects
1. There are two ways to declare a Matrix object:

a. Matrix m = datatype [[r1], [r2], [r3], … [rn]]
Here, we create a matrix with values where r1, r2,... represent
rows (1D arrays) of the matrix. The elements of r1, r2.. should be of the
same type

b. Matrix n = datatype matrix(int m, int n)
This creates an empty matrix with the dimensions numRows by
numCols. Its elements are of type int or float. Sets elements to default
values (0 for a matrix of integers, 0.0 for a matrix of floats).

d. Functions

i. All functions must be defined when being declared. Function names include
letters/digits (lowercase/uppercase) and when declaring functions, it should
specify the return type as shown below in datatype:

datatype foo(datatype parameter1, … , datatype
parameter_n) {

}
All functions are public.

ii. Every MX program should contain a main() function, which starts every
program.

7. Statements
a. Expression statements

i. Expression statements take the form of “expr;”
b. Conditional statements

i. Conditional statements may take the forms of:
1. If (expr) { stmt; }
2. If (expr) { stmt; } else { stmt; }
3. If (expr) { stmt; } elif (expr) { stmt; }
4. If (expr) { stmt; } elif (expr) { stmt; }

else { stmt; }

c. While statement
i. while (expr) {

stmt;
}

d. For statement
i. for(expr_1, expr_2, expr_3) {

stmt;
}

e. Return statement
i. If a function is of type void (As declared in its declaration), a return statement is

not required. Otherwise, a return statement is required.

return expr;

f. Break statement
i. Used to terminate while and for loops. May only be written inside of a while or

for loop

break;

g. Continue
i. Force starts the next iteration of a while or for loop. May also only be written

inside of either mentioned loop.

continue;
h. Null statement

i. Data Type includes String, int, float and matrix.

datatype var_name = NULL;

8. Scope
Declarations made within functions are visible only within those functions (i.e. their scope). A
declaration is not visible to declarations that came before it. You cannot declare an already
declared variable, but redefining variables is allowed.

9. Function calls
a. Functions may be called using the following syntax:

function_name(parameter_1, … , parameter_n)

10. Sample Code

3.1 Basic syntax: example of a user defined function for determining the greatest common divisor
of two integers

int gcd(int x, int y)
{

example of a simple user-defined function
while (x != y)
{

if (x > y)
x -= y;

else
y -= x;

}
return x;

}

int main ()
{

int x = 3;
int y = 15;
int z = gcd(x, y);
printf("%d", z); # prints 3
return 0;

}

3.2 Simple program illustrating built in declaration and manipulation of matrices in our language

int main()
{

Matrix m1 = [[0, 1], [2, 3]; # matrix declaration
m1.print();

/* prints the following
[0, 1]
[2, 3]
*/

Matrix m2 = [[3, 4], [4, 5]]; # matrix declaration
m2.print();

/* prints the following
[3, 4]
[4, 5]
*/

Matrix m3 = m1 *. m2;
m3.print();

/* prints the following
[4, 5]
[1, 2]
[8, 3]
*/

Matrix m4 = m1’ +. m2;
m4.print();

/* prints the following
[3, 6]
[5, 8]
*/

return 0;
}

3.3 C-program approximation of matrix manipulation. As you can see, our language will improve
the way in which matrices are added, subtracted, etc. (less lines of code).

#include <stdio.h>
#include <stdlib.h>

void add(int m[2][2], int n[2][2], int sum[2][2])
{

for(int i = 0; i < 2; i++)
for(int j = 0; j < 2; j++)

sum[i][j] = m[i][j] + n[i][j];
}

void multiply(int m[2][2], int n[2][2], int res[2][2])
{

for(int i = 0; i < 2; i++)
{

for(int j = 0; j < 2; j++)
{

res[i][j] = 0;
for (int k = 0; k < 2; k++)

res[i][j] += m[i][k] * n[k][j];
}

}
}

void transpose(int matrix[2][2], int trans[2][2])
{

for (int i = 0; i < 2; i++)
for (int j = 0; j < 2; j++)

trans[i][j] = matrix[j][i];
}

void print_matrix(int matrix[2][2])
{

for(int i = 0; i < 2; i++)
{

printf("[");
for(int j = 0; j < 2; j++)
{

printf("%d", matrix[i][j]);
if(j < 1)

printf("\t");
}
printf("]\n");

}
}

int main()
{

int m1[2][2] = {{0, 1},{2, 3}};
int m2[2][2] = {{3, 4},{4, 5}};
int m3[2][2];
print_matrix(m1);
printf("\n");
print_matrix(m2);
printf("\n");
multiply(m1, m2, m3);
print_matrix(m3);
printf("\n");
transpose(m1, m3);
add(m3, m2, m3);
print_matrix(m3);
printf("\n");

return 0;
}

