
CTex	Language	Reference	Manual
Weicheng	Zhao,	Rachel	Liu,	Unal	Yigit	Ozulku,	and	Hu	Zheng

Lexical	Conventions

Token

There	are	four	types	of	tokens	in	CTex	languages:	identifiers,	operators,	constants	and	other
symbols.	Blanks,	horizontal	and	vertical	tabs,	newlines,	formfeeds,	and	comments	as	described
below	are	ignored	except	as	they	serve	to	separate	tokens.

Comments

The	characters	%%	introduce	a	comment,	which	terminates	characters	%%.	Comments	do	not
nest.

Identifiers

An	identifier	could	be:

A	single	letter	or	a	single	Greek	letter,	for	example,	a	and	\alpha.	Uppercase	and
lowercase	letters	and	Greek	letters	are	all	supported.	Upper	and	lower	case	(Greek)
letters	are	considered	different.	No	restriction	on	identifiers'	length.
Specific	style	operators	with	a	sequence	of	letters	or	Greek	letters	between	curly
braces,	for	example,	\mathrm{abc}	and	\mathbb{\alpha\beta}.
Anything	follows	the	two	cases	above	with	a	underscore	_	and	a	single	digit,	a	single
letter,	a	single	Greek	letter,	a	sequence	of	digits	between	curly	braces	or	a	sequence	of
letters	or	Greek	letters	between	curly	braces	following.	For	example,	x_a	and
\mathbb{\alpha}_2.

Empties	are	allowed	between	curly	braces	but	unnecessary	blanks	will	be	removed,	which
means	\mathbb{\theta	a}	and	\mathbb{\theta	a}	are	the	same	identifier.

Specific	style	operators	that	could	be	used	in	identifying	an	identifer	in	case	2	are:
\mathrm	\mathit	\mathbf	\mathsf	\mathtt	\mathfrak	\mathcal	\mathbb	\mathscr

Acceptable	Greek	letters	in	CTeX	are	as	follows:
\alpha	\beta	\Gamma	\gamma	\Delta	\delta	\epsilon	\varepsilon	\zeta	\eta	\Theta
\theta	\vartheta	\iota	\kappa	\varkappa	Lambda	\lambda	\mu	\nu	\Xi	\xi	\Pi	\pi	\varpi
\rho	\varrho	\Sigma	\sigma	\varsigma	\tau	\Upsilon	\upsilon	\Phi	\phi	\varphi	\chi
\Psi	\psi	\Omega	\omega

All	other	expressions	appearing	after	a	backslash	are	not	acceptable.

Constants

There	are	two	kinds	of	constants,	Integer	Constant	and	Floating	Constant.
An	integer	constant	should	consist	a	sequence	of	digits	and	would	always	be	considered
decimal.	All	integer	constants	will	be	considered	as	integer	type.

A	floating	constant	consits	of	an	integer	part,	a	decimal	point	and	a	fraction	part.	All	floating
constants	will	be	considered	as	floating	type.

Operators

Operators	in	CTeX	are	as	follows.

^	_	()	/	+	-	=	<	>
\cdot	\times	\div	\sum	\prod	\frac	\leq	\geq	\neq	\mid	\nmid	\neg(for	NOT)	\binom
\arccos	\arcsin	\arctan	\cos	\cosh	\cot	\coth	\csc	\exp	\pmod	\gcd	\vee(for	OR)
\wedge(for	AND)	\lg	\ln	\log	\sqrt	\max	\min	\sec	\sin	\sinh	\tan	\tanh	\|(for	absolute
value)	\lfloor	\rfloor	\lceil	\rceil

Other	symbols

Besides	of	what	is	mentioned	above,	there	are	following	symbols	mostly	used	in	CTeX	language
to	seperate	codes.

Symbol Meaning
\\ Ends	a	statment	or	use	as	seperators	between	different	cases
& Seperator	of	case	expression	and	then	expression	in	the	case	statement

{}
Used	to	bracket	parameters	of	some	operators	and	a	sequence	of	letters	in
definition	of	an	identifier,	also	used	in	some	expressions	and	form	a	statement
closure

% Print	the	result	of	the	following	expression
\begin{cases} Starts	the	case	statement
\end{cases} Ends	the	case	statement

, Seperate	argument	list	when	defining	or	calling	a	function,	also	used	in	some
experssions

Syntax
In	this	part,	we	will	introduce	expressions	and	their	synatx	in	CTeX	by	giving	out	the	formal
definition	of	every	kind	of	expressions.

Arithmetic	conversions

When	a	description	of	an	arithmetic	operator	below	uses	the	phrase	“the	numeric	arguments
are	converted	to	a	common	type”,	this	means	that	the	operator	implementation	for	built-in
types	works	as	follows:

If	either	argument	is	a	floating	point	number,	the	other	is	converted	to	floating	point;

otherwise,	both	must	be	integers	and	no	conversion	is	necessary.

Some	additional	rules	apply	for	certain	operators.

Atoms

Atoms	are	the	most	basic	elements	of	expressions.	The	simplest	atoms	are	identifiers	or
literals.	Forms	enclosed	in	parentheses,	brackets	or	braces	are	also	categorized	syntactically	as
atoms.	The	syntax	for	atoms	is:

atom	::=		identifier	|	literal	|	parenth_form

Identifiers

An	identifier	occurring	as	an	atom	is	a	name.	See	section	Identifiers	for	lexical	definition.	When
the	name	is	bound	to	an	object,	evaluation	of	the	atom	yields	that	object.

Literals

CTeX	only	supports	integer	and	floating	numeric	literals:

literal	::=		integer	|	floatnumber	

Evaluation	of	a	literal	yields	an	object	of	the	given	type	with	the	given	value.	The	value	may	be
approximated	in	the	case	of	floating	point.

Parenthesized	forms

A	parenthesized	form	is	an	expression	enclosed	in	parentheses	or	similiar	math	operators	--	\|
for	absolute	value,	\lfloor	\rfloor	for	floor	and	\lceil	\rceil	for	ceiling:

parenth_form	::=		
											"("	expr	")"	
										|	"\|"	expr_calc	"\|"	
										|	"\lfloor"	expr_calc	"\rfloor"
										|	"\lceil"	expr_calc	"\rceil"

A	parenthesized	expression	yields	the	single	expression	that	makes	up	the	expression	list.

The	power	operator

The	power	operator	binds	more	tightly	than	unary	operators	on	its	left,	and	binds	less	tightly
than	unary	operators	on	its	right.	The	syntax	is:

expr_pow	::=		atom	|	atom	"^"	expr_unary	|	atom	"^"	"{"	expr_calc	"}"

The	log-like	function	operators

The	log-like	function	operators	include	\lg	\ln	\log	\sqrt	\sin	\cos	\tan	\arcsin	\arccos
\arctan	\sinh	\cosh	\tanh	\cot	\sec	\csc	\coth.	They	have	the	same	priority.	The	synatx	is:

log_like_ops	::=	"\lg"	|	"\ln"	|	"\log"	
|	"\sqrt"	|	"\sin"	|	"\cos"	|	"\tan"	|	"\arcsin"	
|	"\arccos"	|	"\arctan"	|	"\sinh"	|	"\cosh"	
|	"\tanh"	|	"\cot"	|	"\sec"	|	"\csc"	|	"\coth"
log_op	:=	"\log"	UNDERLINE	"{"	expr_calc	"}"
expr_log	::=		expr_pow	|	log_like_ops	expr_pow	|	log_op		expr_pow

Unary	arithmetic	operations

All	unary	arithmetic	operations	have	the	same	priority:

expr_unary	::=		expr_log	|	"-"	expr_log	|	"+"	expr_log

Implicit	multiplication

Implicit	multiplication	declares	the	situation	like	x(x+y)	in	math.	It's	given	higher	priority	than
multiplicative	operators.

expr_impl_mult	::=	expr_unary	|	expr_impl_mult	expr_unary

Multiplicative	operators

The	multiplicative	operators	*	\codt	\times	/	\div	\pmod	group	left-to-right.

The	*	\codt	\times	operators	yield	the	product	of	its	arguments.

mult_op:	"*"	|	"\cdot"	|	"\times"

The	/	\div	operator	yields	the	quotient	of	its	arguments.

div_op:	"/"	|	"\div"

The	\pmod	operator	yields	the	the	remainder	from	the	division	of	the	first	expression	by	the
second.

expr_mult:
				expr_impl_mult
				|	expr_mult	mult_op	expr_impl_mult
				|	expr_mult	div_op	expr_impl_mult
				|	expr_mult	"\pmod"	expr_impl_mult

Additive	operators

The	additive	operators	+	and	−	group	left-to-right.

"expression	+	expression"	yields	the	sum	of	the	two	expressions.
"expression	-	expression"	yields	the	difference	of	the	operands.

expr_add	::=	expr_mult	|	expr_add	"+"	expr_mult	|	expr_add	"-"	expr_mult

Common	operators

Common	operators	include	\gcd	\min	\max.	The	synatx	is:

com_op	::=	"\gcd"	|	"\min"	|	"\max"
expr_com	::=	com_op	"("	expr_calc	","	expr_calc	")"

Functional	expressions

Functional	expressions	evaluate	a	function	call	that	was	defined	before	in	the	program	by	the
user.

arg_list	::=	expr_calc	|	expr_calc	","	arg_list	
expr_func	::=	funcname	"("	arg_list	")"
funcname	::=	identifier

Frac-like	operations

The	frac-like	function	operators	include	\frac	and	\binom.	The	synatx	is:

frac_op	::=	"\frac"	|	"\binom"	
expr_frac	::=	frac_op	"{"	expr_calc	","	expr_calc	"}"

Large	operators	expression

The	Large	operators	include	\sum	and	\prod.	They	provide	users	an	easier	way	to	calculate
some	accumulation	values.	The	synatx	is:

large_op	::=	"\sum"	|	"\prod"	
expr_large_op	::=	large_op	"_"	"{"	index	"="	start	"}"	"^"	"{"	end	"}"	
large_op_	expr
index	::=	identifier
start	::=	expr_calc
end	::=	expr_calc
large_op_expr	::=	expr_calc

The	expression	would	evaluate	following	these	steps:

1.	 Evaluate	the	expression	"start".
2.	 Assign	the	result	to	the	identifier	"index",	if	"index"	is	not	defined	before	in	the	same

scope	then	"index"	would	become	a	local	variable	whose	scope	is	only	in	this
expression,	otherwise,	"index"	would	be	rebound.

3.	 Evaluate	the	expression	"end".
4.	 Check	if	"index"	is	greater	than	the	result,	if	so,	go	to	step	8.
5.	 Evaluate	the	expression	"large_op_expr"	and	store	the	results
6.	 Increase	the	"index"	by	1.
7.	 Go	to	step	3.
8.	 Accumulate	all	the	stored	results	accounding	to	the	type	of	the	operations	and	take	the

result	as	the	result	of	this	expression.

Calculating	expressions

Calculating	expressions	are	illogical	expressions,	which	calculate	the	value	of	the	expressions.

expr_calc	::=	expr_add	|	expr_com	|	expr_func	|	expr_frac	|	expr_large_op

Comparisons

All	comparison	operations	in	CTex	have	the	same	priority,	which	is	lower	than	that	of	any
arithmetic	operations.

expr_comp	::=
				expr_calc
				|	expr_comp	"<"	expr_calc
				|	expr_comp	">"	expr_calc
				|	expr_comp	"\leq"	expr_calc
				|	expr_comp	"\leq"	expr_calc
				|	expr_comp	"="	expr_calc
				|	expr_comp	"\neq"	expr_calc
				|	expr_comp	"\nmid"	expr_calc
				|	expr_comp	"\mid"	expr_calc

Logical	Expressions

In	CTex,	boolean	operations	are	evaluated	from	left	to	right,	but	they	do	not	yield	outputs.

expr_logic		::=
						expr_comp	
				|	expr_logic	"\wedge"	expr_comp
				|	expr_logic	"\vee"	expr_comp
				|	"\neg"	expr_comp

All	Expressions

All	expressions	in	CTeX	can	be	defined	as

expr	::=	expr_logic

Operator	Precedence

The	precedence	of	expression	operators	is	the	same	as	the	order	of	the	following	table	(highest
precedence	first):

atom:	
				IDENTIFIER
				|	INT_CONST	
				|	FLOAT_CONST
				|	"("	expr	")"	
				|	"\|"	expr_calc	"\|"	
				|	"\lfloor"	expr_calc	"\rfloor"
				|	"\lceil"	expr_calc	"\rceil"

expr_pow:
				atom
				|	atom	"^"	expr_unary	
				|	atom	"^"	"{"	expr_calc	"}"

log_like_op:
					"\lg"	|	"\ln"	|	"\log"	|	"\sqrt"	|	"\sin"	|	"\cos"	|	"\tan"	
					|	"\arcsin"	|	"\arccos"	|	"\arctan"	|	"\sinh"	|	"\cosh"	
					|	"\tanh"	|	"\cot"	|	"\sec"	|	"\csc"	|	"\coth"
log_op:
				"\log"	"_"	"{"	expr_calc	"}"
expr_log:
				expr_pow	|	log_like_ops	expr_pow	|	log_op		expr_pow

expr_unary:
				expr_pow
				|	expr_log
				|	"+"	expr_pow	
				|	"-"	expr_pow	

expr_impl_mult:
				expr_unary

				|	expr_impl_mult	expr_unary

mult_op:	"*"	|	"\cdot"	|	"\times"
div_op:	"/"	|	"\div"
expr_mult:
				expr_impl_mult
				|	expr_mult	mult_op	expr_impl_mult
				|	expr_mult	div_op	expr_impl_mult
				|	expr_mult	"\pmod"	expr_impl_mult

expr_add:
				expr_mult
				|	expr_add	"+"	expr_mult
				|	expr_add	"-"	expr_mult

com_op:	"\gcd"	|	"\min"	|	"\max"
expr_com:	com_op	"("	expr_calc	","	expr_calc	")"

arg_list:	expr_calc	|	expr_calc	","	arg_list	
expr_func:	identifier	"("	arg_list	")"

frac_op:	"\frac"	|	"\binom"	
expr_frac:	frac_op	"{"	expr_calc	","	expr_calc	"}"

large_op:	"\sum"	|	"\prod"	
expr_large_op:	large_op	"_"	"{"	identifier	"="	expr_calc	"}"	"^"	"{"	expr_calc	
"}"	expr_calc

expr_calc:
				expr_add	|	expr_com	|	expr_func	|	expr_frac	|	expr_large_op
				
expr_comp:
				expr_calc
				|	expr_comp	"<"	expr_calc
				|	expr_comp	">"	expr_calc
				|	expr_comp	"\leq"	expr_calc
				|	expr_comp	"\leq"	expr_calc
				|	expr_comp	"="	expr_calc
				|	expr_comp	"\neq"	expr_calc
				|	expr_comp	"\nmid"	expr_calc
				|	expr_comp	"\mid"	expr_calc

expr_logic:
				expr_comp
				|	expr_logic	"\wedge"	expr_comp
				|	expr_logic	"\vee"	expr_comp
				|	"\neg"	expr_comp

expr:
				expr_logic
				

Statements
There	are	6	kinds	of	statements	in	CTeX	language:	expression	statement,	assignment
statement,	print	statement,	function	definition	statement	and	case	statement.	We	call	first	3
kinds	of	statment	as	simple	statment,	while	the	last	3	kinds	as	complicated	statment.	A
statement	ends	with	double	backslashes.	Statements	can	compound	together	into	a	statement
list	within	curly	braces	as	a	single	statment	to	be	used	in	complicated	statement.

simple_stmt	::=	expression_stmt	|	assignment_stmt	|	print_stmt
comp_stmt	::=	func_def	|	case_stmt
single_stmt	::=	simple_stmt	|	comp_stmt
stmt_list	::=	single_stmt	|	single_stmt	"\\"	stmt_list
stmt_closure	::=	"{"	single_stmt	"\\"	stmt_list	"}"
stmt	::=	single_stmt	|	stmt_closure	
stmts	::=	stmt	|	stmt	"\\"	stmts

Scope

If	and	only	if	the	assignment	statment	or	function	definition	statement	is	a	part	of	a
complicated	statement	and	the	identifier	has	not	been	bound	outside	the	complicated
statement,	the	assignment	statement	or	function	definition	statement	will	make	the	identifier
local.	Otherwise,	it	will	make	the	identifier	be	able	to	use	and	refer	in	the	whole	program
globally,	even	in	other	complicated	statments.

Expression	statements

Expression	statements	are	used	(mostly	interactively)	to	compute	and	write	a	value,	or
(usually)	to	call	a	procedure	(a	function	that	returns	no	meaningful	result).	Other	uses	of
expression	statements	are	allowed	and	occasionally	useful.	The	syntax	for	an	expression
statement	is:

expression_stmt	::=	expr_calc		

An	expression	statement	evaluates	the	expression.

Assignment	statements

Assignment	statements	are	used	to	(re)bind	names	to	values:

assignment_stmt	::=		identifier	"="	expr_calc

An	assignment	statement	evaluates	the	expression	and	assigns	result	to	the	identifier.	The
identifier	would	be	rebound	if	it	was	already	bound.

Print	statements

Print	statements	are	used	to	print	the	evalution	result	of	an	expression	to	standard	output.	It
will	also	output	a	newline	\n	implicitly	after	outputing	the	result.

print_stmt	::=	"%"	expr_calc

Function	definitions

A	function	definition	defines	a	user-defined	function.

func_def	::=	funcname	"("	param_list		")"	"="	stmt
param_list	::=	identifier	|	identifier	","	param_list
funcname	::=	identifier

A	function	definition	is	an	executable	statement.	Its	execution	binds	the	function	name.	The
function	definition	does	not	execute	the	function	body.

Case	statements	conditional	execution

The	case	statement	is	used	for	conditional	execution

case_stmt	::=	"\begin{cases}"	case_stmt_list	"\end{cases}"
case_stmt_list	::=	suite	case_stmt_list
suite	::=	stmt	"&"	expr_logic	"\\"

It	selects	exactly	one	of	the	suites	by	evaluating	the	expressions	one	by	one	until	one	is	found
to	be	true;	then	the	statement	in	that	suite	is	executed	and	no	other	part	of	the	case	statement
is	executed	or	evaluated.	If	all	expressions	are	false,	then	none	of	the	suites	would	be
executed.

Top	Level	and	Full	Grammar	specification
The	CTeX	compiler	will	get	its	input	from	the	file.	The	full	grammar	of	CTeX	are	as	follows.

file:	[stmts]	EOF

stmts:
				stmt	"\\"	stmts*
stmt:
				single_stmt
				|	stmt_closure	
stmt_closure:
				"{"	single_stmt	"\\"	stmt_list	"}"
stmt_list:
				single_stmt	("\\"	stmt_list)*
single_stmt:
				expression_stmt	
				|	assignment_stmt	
				|	print_stmt
				|	func_def	
				|	case_stmt

expression_stmt:	expr_calc
assignment_stmt:	identifier	"="	expr_calc
print_stmt:	"%"	expr_calc
func_def:	identifier	"("	param_list		")"	"="	stmt
param_list:	identifier	(","	param_list)*
case_stmt:	"\begin{cases}"	case_stmt_list	"\end{cases}"
case_stmt_list:	suite	case_stmt_list
suite:	stmt	"&"	expr_logic	"\\"

