Semiconductor
noun

1. A substance, such as silicon or germanium, with electrical conductivity intermediate between that of an insulator and a conductor
2. A semiconductor device
Sand into Silicon

Silica a.k.a. SiO$_2$ a.k.a. Quartz

SiO$_2$ + 2 C → Si + 2 CO

Elemental, amorphous silicon

Monocrystalline Silicon Ingot
Doping Silicon Makes It a Better Conductor

- Undoped (pure) silicon crystal: Not a good conductor
- p-type (doped) silicon: boron atom steals a nearby electron
- n-type (doped) silicon: arsenic’s extra electron jumps loose
A PN Junction aka A Diode

\[p (\text{holes}) \quad \text{Depletion region} \quad n (\text{electrons}) \]

\[0 \text{ V} \]

Ammeter
A PN Junction aka A Diode

Depletion region

Forward biased: current flows
A PN Junction aka A Diode

Depletion region

\[V = -2 \text{ V} \]

Reverse biased: no current flow

Reverse biased: no current flow

Ammeter
An N-Channel MOS Transistor

Gate at 0V: Off

SiO₂

Drain

Source

n

p (holes)

Ammeter

3V

0V
An N-Channel MOS Transistor

Gate positive: On

SiO₂

Drain

Source

p (holes)

Ammeter

3 V

Gate
An inverter is built from two MOSFETs:
- An n-FET connected to ground
- A p-FET connected to the power supply

The CMOS Inverter
The CMOS Inverter

When the input is near the power supply voltage (“1”),
the p-FET is turned off;
the n-FET is turned on, connecting the output to ground (“0”).
n-FETs are only good at passing 0’s
The CMOS Inverter

When the input is near ground ("0"), the p-FET is turned on, connecting the output to the power supply ("1"); the n-FET is turned off. p-FETs are only good at passing 1’s
The CMOS NAND Gate

Two-input NAND gate:
- two n-FETs in series;
- two p-FETs in parallel
The CMOS NAND Gate

Both inputs 0:
Both p-FETs turned on
Output pulled high
One input 1, the other 0:
One p-FET turned on
Output pulled high
One n-FET turned on, but does not control output
The CMOS NAND Gate

Both inputs 1:
Both n-FETs turned on
Output pulled low
Both p-FETs turned off
The CMOS NOR Gate

Two-input NOR gate:
two n-FETs in parallel;
two p-FETs in series.
Not as fast as the NAND gate because n-FETs are faster than p-FETs
A CMOS AND-OR-INVERT Gate
Static CMOS Gate Structure

Pull-up and Pull-down networks must be complementary; exactly one should be connected for each input combination.

Series connection in one should be parallel in the other.
CMOS Inverter Layout

Cross Section Through N-channel FET

Top View
Full Adder Layouts

Intel 4004: The First Single-Chip Microprocessor

Announcing a new era of integrated electronics

4001: 256-byte ROM + 4-bit IO port
4002: 40-byte RAM
4003: 10-bit shift register
4004: 740 kHz 4-bit CPU w/ 45 instructions (2300 transistors)
Intel 4004 Masks
Intel 4004 Die Photograph