
Fundamentals of Computer Systems
Thinking Digitally

Stephen A. Edwards

Columbia University

Summer 2021

The Subject

s

of this Class

0

1

The Subjects of this Class

0 1

But let your communication be, Yea, yea; Nay, nay: for
whatsoever is more than these cometh of evil.

— Matthew 5:37

Engineering Works Because of Abstraction

Application Software

Operating Systems

Architecture

Micro-Architecture

Logic

Digital Circuits

Analog Circuits

Devices

Physics

Engineering Works Because of Abstraction

Application Software COMS 3157, 4156, et al.

Operating Systems COMS W4118

Architecture Second Half of 3827

Micro-Architecture Second Half of 3827

Logic First Half of 3827

Digital Circuits First Half of 3827

Analog Circuits ELEN 3331

Devices ELEN 3106

Physics ELEN 3106 et al.

Boring Stuff

http://www.cs.columbia.edu/~sedwards/classes/2021/3827-summer/

Prof. Stephen A. Edwards

sedwards@cs.columbia.edu

Lectures 4:10 – 6:40 PM, Mondays and Wednesdays
May 3–June 14

Weight What When

40% Homeworks See Webpage
60% Final exam June 18th

Submit homework online via Courseworks

http://www.cs.columbia.edu/~sedwards/classes/2021/3827-summer/

Software You Need

Digital Simulator github.com/hneemann/Digital

Circuit design problems: download (class website) .zip file
with .dig files, edit with Digital, upload to Courseworks

SPIM: A MIPS32 Simulator spimsimulator.sourceforge.net

MIPS assembly coding:, download .zip file with .s files,
edit in favorite text editor, test and debug in SPIM,
upload to Courseworks

The Inkscape SVG File Editor inkscape.org

You can do homework by downloading an SVG file from
the class website, editing it in Inkscape, and uploading it
to Courseworks

https://github.com/hneemann/Digital
http://spimsimulator.sourceforge.net/
https://inkscape.org

Rules and Regulations

Each assignment turned in must be unique; work must
ultimately be your own.

Don’t cheat: Columbia Students Aren’t Cheaters

Test will be closed-book; you may use a single sheet of your
own notes

Optional Texts: Alternative 1

No required text. One option:

Ï David Harris and Sarah Harris. Digital Design and
Computer Architecture. Either 1st or 2nd ed.

Almost precisely right for the scope of this class: digital
logic and computer architecture.

Optional Texts: Alternative 2

Ï M. Morris Mano and
Charles Kime. Logic and
Computer Design
Fundamentals. 4th ed.

Ï David A. Patterson and
John L. Hennessy.
Computer Organization
and Design, The
Hardware/Software
Interface. 4th ed.

th
in

kg
ee

k.
co

m

Which Numbering System Should We Use?

Roman: I II III IV V VI VII VIII IX X

Mayan: base 20, Shell = 0

Babylonian: base 60

The Decimal Positional Numbering System

Ten figures: 0 1 2 3 4 5 6 7 8 9

73010 = 7×102 +3×101 +0×100

99010 = 9×102 +9×101 +0×100

Why base ten?

Hexadecimal, Decimal, Octal, and Binary

Hex Dec Oct Bin

0 0 0 0
1 1 1 1
2 2 2 10
3 3 3 11
4 4 4 100
5 5 5 101
6 6 6 110
7 7 7 111
8 8 10 1000
9 9 11 1001
A 10 12 1010
B 11 13 1011
C 12 14 1100
D 13 15 1101
E 14 16 1110
F 15 17 1111

Binary and Octal: Electronics Likes Powers of Two

D
EC

PD
P-

8/
I,

c.
19

68

Oct Bin

0 0
1 1
2 10
3 11
4 100
5 101
6 110
7 111

PC = 0101101111012

= 0×211 +1×210 +0×29 +1×28 +1×27 +0×26 +
1×25 +1×24 +1×23 +1×22 +0×21 +1×20

= 26758

= 2×83 +6×82 +7×81 +5×80

= 146910

Hexadecimal Numbers

Base 16: 0 1 2 3 4 5 6 7 8 9 A B C D E F

Instead of groups of 3 bits (octal), Hex uses groups of 4.

CAFEF00D16 = 12×167 +10×166 +15×165 +14×164 +
15×163 +0×162 +0×161 +13×160

= 3,405,705,22910

C A F E F 0 0 D Hex
11001010111111101111000000001101 Binary
3 1 2 7 7 5 7 0 0 1 5 Octal

Computers Rarely Manipulate True Numbers

Infinite memory still very expensive

Finite-precision numbers typical

32-bit processor: naturally manipulates 32-bit numbers

64-bit processor: naturally manipulates 64-bit numbers

How many different numbers can you

represent with 5

binary
octal
decimal
hexadecimal

digits?

Jargon

Bit Binary digit: 0 or 1

Byte Eight bits

Word Natural number of bits for the
processor, e.g., 16, 32, 64

LSB Least Significant Bit (“rightmost”)

MSB Most Significant Bit (“leftmost”)

Decimal Addition Algorithm

1 1

434
+628

1062

4+8 = 12

1+3+2 = 6
4+6 = 10

+ 0 1 2 3 4 5 6 7 8 9

0 0 1 2 3 4 5 6 7 8 9
1 1 2 3 4 5 6 7 8 9 10
2 2 3 4 5 6 7 8 9 10 11
3 3 4 5 6 7 8 9 10 11 12
4 4 5 6 7 8 9 10 11 12 13
5 5 6 7 8 9 10 11 12 13 14
6 6 7 8 9 10 11 12 13 14 15
7 7 8 9 10 11 12 13 14 15 16
8 8 9 10 11 12 13 14 15 16 17
9 9 10 11 12 13 14 15 16 17 18

10 10 11 12 13 14 15 16 17 18 19

Decimal Addition Algorithm

1

1
434

+628

106

2

4+8 = 12
1+3+2 = 6

4+6 = 10

+ 0 1 2 3 4 5 6 7 8 9

0 0 1 2 3 4 5 6 7 8 9
1 1 2 3 4 5 6 7 8 9 10
2 2 3 4 5 6 7 8 9 10 11
3 3 4 5 6 7 8 9 10 11 12
4 4 5 6 7 8 9 10 11 12 13
5 5 6 7 8 9 10 11 12 13 14
6 6 7 8 9 10 11 12 13 14 15
7 7 8 9 10 11 12 13 14 15 16
8 8 9 10 11 12 13 14 15 16 17
9 9 10 11 12 13 14 15 16 17 18

10 10 11 12 13 14 15 16 17 18 19

Decimal Addition Algorithm

1

1
434

+628

10

62

4+8 = 12
1+3+2 = 6

4+6 = 10

+ 0 1 2 3 4 5 6 7 8 9

0 0 1 2 3 4 5 6 7 8 9
1 1 2 3 4 5 6 7 8 9 10
2 2 3 4 5 6 7 8 9 10 11
3 3 4 5 6 7 8 9 10 11 12
4 4 5 6 7 8 9 10 11 12 13
5 5 6 7 8 9 10 11 12 13 14
6 6 7 8 9 10 11 12 13 14 15
7 7 8 9 10 11 12 13 14 15 16
8 8 9 10 11 12 13 14 15 16 17
9 9 10 11 12 13 14 15 16 17 18

10 10 11 12 13 14 15 16 17 18 19

Decimal Addition Algorithm

1 1
434

+628

1

062

4+8 = 12
1+3+2 = 6

4+6 = 10

+ 0 1 2 3 4 5 6 7 8 9

0 0 1 2 3 4 5 6 7 8 9
1 1 2 3 4 5 6 7 8 9 10
2 2 3 4 5 6 7 8 9 10 11
3 3 4 5 6 7 8 9 10 11 12
4 4 5 6 7 8 9 10 11 12 13
5 5 6 7 8 9 10 11 12 13 14
6 6 7 8 9 10 11 12 13 14 15
7 7 8 9 10 11 12 13 14 15 16
8 8 9 10 11 12 13 14 15 16 17
9 9 10 11 12 13 14 15 16 17 18

10 10 11 12 13 14 15 16 17 18 19

Decimal Addition Algorithm

1 1
434

+628
1062

4+8 = 12
1+3+2 = 6

4+6 = 10

+ 0 1 2 3 4 5 6 7 8 9

0 0 1 2 3 4 5 6 7 8 9
1 1 2 3 4 5 6 7 8 9 10
2 2 3 4 5 6 7 8 9 10 11
3 3 4 5 6 7 8 9 10 11 12
4 4 5 6 7 8 9 10 11 12 13
5 5 6 7 8 9 10 11 12 13 14
6 6 7 8 9 10 11 12 13 14 15
7 7 8 9 10 11 12 13 14 15 16
8 8 9 10 11 12 13 14 15 16 17
9 9 10 11 12 13 14 15 16 17 18

10 10 11 12 13 14 15 16 17 18 19

Binary Addition Algorithm

10011

10011
+11001

101100

1+1 = 10

1+1+0 = 10
1+0+0 = 01
0+0+1 = 01
0+1+1 = 10

+ 0 1

0 00 01
1 01 10

10 10 11

Binary Addition Algorithm

1001

1
10011

+11001

10110

0

1+1 = 10
1+1+0 = 10

1+0+0 = 01
0+0+1 = 01
0+1+1 = 10

+ 0 1

0 00 01
1 01 10

10 10 11

Binary Addition Algorithm

100

11
10011

+11001

1011

00

1+1 = 10
1+1+0 = 10
1+0+0 = 01

0+0+1 = 01
0+1+1 = 10

+ 0 1

0 00 01
1 01 10

10 10 11

Binary Addition Algorithm

10

011
10011

+11001

101

100

1+1 = 10
1+1+0 = 10
1+0+0 = 01
0+0+1 = 01

0+1+1 = 10

+ 0 1

0 00 01
1 01 10

10 10 11

Binary Addition Algorithm

1

0011
10011

+11001

10

1100

1+1 = 10
1+1+0 = 10
1+0+0 = 01
0+0+1 = 01
0+1+1 = 10

+ 0 1

0 00 01
1 01 10

10 10 11

Binary Addition Algorithm

10011
10011

+11001
101100

1+1 = 10
1+1+0 = 10
1+0+0 = 01
0+0+1 = 01
0+1+1 = 10

+ 0 1

0 00 01
1 01 10

10 10 11

Signed Numbers: Dealing with Negativity

How should we represent negative numbers?

Binary Signed Magnitude Numbers

The familiar notation: negative numbers have a leading −
Binary signed-magnitude encoding: leading 1 indicates
negative; remaining bits treated as binary.

00002 = 0

00102 = 2

10102 =−2

11112 =−7

10002 =−0?

Can be made to work, but addition is
annoying:

If the signs match, add the magnitudes
and use the same sign.

If the signs differ, subtract the smaller
number from the larger; return the sign
of the larger.

One’s Complement Numbers

Like Signed Magnitude, a leading 1 indicates a negative
One’s Complement number. However, number magnitude is
complement of remaining bits interpreted as binary.

To negate a number, complement (flip) each bit.

00002 = 0

00102 = 2

11012 =−2

10002 =−7

11112 =−0?

Addition is nicer: just add the one’s
complement numbers as if they were
normal binary.

Really annoying having a −0: two
numbers are equal if their bits are the
same or if one is 0 and the other is −0.

Two’s Complement Numbers
Really neat trick: just make only the most
significant bit represent a negative number
instead of positive; treat the rest as binary.

11012 =−8+4+1=−3

11112 =−8+4+2+1=−1

01112 = 4+2+1= 7

10002 =−8

Easy addition: just add in binary and discard any carry.

Negation: complement each bit (as in one’s complement)
then add 1.

Subtraction done with negation and addition.

Very good property: no −0

Two’s complement numbers are equal if and only if all their
bits are the same.

Number Representations Compared

Code Binary Signed One’s Two’s
Mag. Comp. Comp.

0000 0 0 0 0
0001 1 1 1 1

...
0111 7 7 7 7
1000 8 −0 −7 −8
1001 9 −1 −6 −7

...
1110 14 −6 −1 −2
1111 15 −7 −0 −1

Smallest number Largest number

https://xkcd.com/571/

How many bits in his brain?

https://xkcd.com/571/

Fixed-point Numbers

How to represent fractional
numbers? In decimal, we continue
with negative powers of 10:

31.4159 = 3×101 +1×100 +
4×10−1 +1×10−2 +5×10−3 +9×10−4

Also works in binary:

1011.01102 = 1×23 +0×22 +1×21 +1×20 +
0×2−1 +1×2−2 +1×2−3 +0×2−4

= 8+2+1+0.25+0.125

= 11.375

Addition and subtraction algorithms the same.

F
F a
u c
Interesting

The ancient Egyptians used binary fractions:

The Eye of Horus

Binary-Coded Decimal

thinkgeek.com

Humans prefer
reading decimal
numbers;
computers prefer
binary.

BCD is a
compromise: every
four bits
represents a
decimal digit.

Dec BCD

0 0000 0000
1 0000 0001
2 0000 0010
...

...
8 0000 1000
9 0000 1001

10 0001 0000
11 0001 0001

...
...

18 0001 1000
19 0001 1001
20 0010 0000

...
...

BCD Addition

Binary addition
followed by a possible
correction.

Any four-bit group
greater than 9 must
have 6 added to it.

Example:

11

158
+242

400

1 1

000101011000
+001001000010

1010 First group

+ 0110 Correction

10100000 Second group
+ 0110 Correction

01000000 Third group
(No correction)

010000000000 Result

BCD Addition

Binary addition
followed by a possible
correction.

Any four-bit group
greater than 9 must
have 6 added to it.

Example:

11

158
+242

400

1 1

000101011000
+001001000010

1010 First group
+ 0110 Correction

10100000 Second group
+ 0110 Correction

01000000 Third group
(No correction)

010000000000 Result

BCD Addition

Binary addition
followed by a possible
correction.

Any four-bit group
greater than 9 must
have 6 added to it.

Example:

1

1
158

+242

40

0

1

1
000101011000

+001001000010

1010 First group
+ 0110 Correction

10100000 Second group

+ 0110 Correction

01000000 Third group
(No correction)

010000000000 Result

BCD Addition

Binary addition
followed by a possible
correction.

Any four-bit group
greater than 9 must
have 6 added to it.

Example:

1

1
158

+242

40

0

1

1
000101011000

+001001000010

1010 First group
+ 0110 Correction

10100000 Second group
+ 0110 Correction

01000000 Third group
(No correction)

010000000000 Result

BCD Addition

Binary addition
followed by a possible
correction.

Any four-bit group
greater than 9 must
have 6 added to it.

Example:

11
158

+242

4

00

1 1
000101011000

+001001000010

1010 First group
+ 0110 Correction

10100000 Second group
+ 0110 Correction

01000000 Third group

(No correction)

010000000000 Result

BCD Addition

Binary addition
followed by a possible
correction.

Any four-bit group
greater than 9 must
have 6 added to it.

Example:

11
158

+242

400

1 1
000101011000

+001001000010

1010 First group
+ 0110 Correction

10100000 Second group
+ 0110 Correction

01000000 Third group
(No correction)

010000000000 Result

Floating-Point Numbers: “Scientific Notation”

Greater dynamic range at the expense of precision
Excellent for real-world measurements

IEEE 754 Single-Precision (32-bit)

Sign 8-bit Exponent 23-bit Fraction

1 1 0 0 0 0 0 0 1 0 1 1 0

=− 1.01100002

implicit

× 2100000012−127

“excess 127”

=−1.375×22

=−5.5

ASCII For Representing Characters and Strings
0 1 2 3 4 5 6 7

0 NUL DLE SP 0 @ P ‘ p
1 SOH DC1 ! 1 A Q a q
2 STX DC2 " 2 B R b r
3 ETX DC3 # 3 C S c s
4 EOT DC4 $ 4 D T d t
5 ENQ NAK % 5 E U e u
6 ACK SYN & 6 F V f v
7 BEL ETB ’ 7 G W g w
8 BS CAN (8 H X h x
9 HT EM) 9 I Y i y
A LF SUB * : J Z j z
B VT ESC + ; K [k {
C FF FS , < L \ l |
D CR GS − = M] m }
E SO RS . > N ^ n ~
F SI US / ? O __ o DEL

