Fundamentals of Computer Systems
Thinking Digitally

Stephen A. Edwards

Columbia University

Summer 2021
The Subject of this Class

0
The Subjects of this Class

| 0 | 1 |
But let your communication be, Yea, yea; Nay, nay: for whatsoever is more than these cometh of evil.

— Matthew 5:37
Engineering Works Because of Abstraction

Application Software

Operating Systems

Architecture

Micro-Architecture

Logic

Digital Circuits

Analog Circuits

Devices

Physics
Engineering Works Because of Abstraction

<table>
<thead>
<tr>
<th>Discipline</th>
<th>Course Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Application Software</td>
<td>COMS 3157, 4156, et al.</td>
</tr>
<tr>
<td>Operating Systems</td>
<td>COMS W4118</td>
</tr>
<tr>
<td>Architecture</td>
<td>Second Half of 3827</td>
</tr>
<tr>
<td>Micro-Architecture</td>
<td>Second Half of 3827</td>
</tr>
<tr>
<td>Logic</td>
<td>First Half of 3827</td>
</tr>
<tr>
<td>Digital Circuits</td>
<td>First Half of 3827</td>
</tr>
<tr>
<td>Analog Circuits</td>
<td>ELEN 3331</td>
</tr>
<tr>
<td>Devices</td>
<td>ELEN 3106</td>
</tr>
<tr>
<td>Physics</td>
<td>ELEN 3106 et al.</td>
</tr>
</tbody>
</table>
Boring Stuff

http://www.cs.columbia.edu/~sedwards/classes/2021/3827-summer/

Prof. Stephen A. Edwards
sedwards@cs.columbia.edu

Lectures 4:10 – 6:40 PM, Mondays and Wednesdays
May 3–June 14

<table>
<thead>
<tr>
<th>Weight</th>
<th>What</th>
<th>When</th>
</tr>
</thead>
<tbody>
<tr>
<td>40%</td>
<td>Homeworks</td>
<td>See Webpage</td>
</tr>
<tr>
<td>60%</td>
<td>Final exam</td>
<td>June 18th</td>
</tr>
</tbody>
</table>

Submit homework online via Courseworks
Software You Need

Digital Simulator github.com/hneemann/Digital

Circuit design problems: download (class website) .zip file with .dig files, edit with Digital, upload to Courseworks

SPIM: A MIPS32 Simulator spimsimulator.sourceforge.net

MIPS assembly coding: download .zip file with .s files, edit in favorite text editor, test and debug in SPIM, upload to Courseworks

The Inkscape SVG File Editor inkscape.org

You can do homework by downloading an SVG file from the class website, editing it in Inkscape, and uploading it to Courseworks
Rules and Regulations

Each assignment turned in must be unique; work must ultimately be your own.

Don’t cheat: Columbia Students Aren’t Cheaters

Test will be closed-book; you may use a single sheet of your own notes
Optional Texts: Alternative 1

No required text. One option:

- David Harris and Sarah Harris. *Digital Design and Computer Architecture*. Either 1st or 2nd ed.

Almost precisely right for the scope of this class: digital logic and computer architecture.
Optional Texts: Alternative 2

There are only 10 types of people in the world: Those who understand binary and those who don't.
Which Numbering System Should We Use?

Roman: I II III IV V VI VII VIII IX X

Mayan: base 20, Shell = 0

Babylonian: base 60
The Decimal Positional Numbering System

Ten figures: 0 1 2 3 4 5 6 7 8 9

\[730_{10} = 7 \times 10^2 + 3 \times 10^1 + 0 \times 10^0\]

\[990_{10} = 9 \times 10^2 + 9 \times 10^1 + 0 \times 10^0\]

Why base ten?
Hexadecimal, Decimal, Octal, and Binary

<table>
<thead>
<tr>
<th>Hex</th>
<th>Dec</th>
<th>Oct</th>
<th>Bin</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>00</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>11</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>4</td>
<td>100</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>5</td>
<td>101</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>6</td>
<td>110</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>7</td>
<td>111</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>10</td>
<td>1000</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>11</td>
<td>1001</td>
</tr>
<tr>
<td>A</td>
<td>10</td>
<td>12</td>
<td>1010</td>
</tr>
<tr>
<td>B</td>
<td>11</td>
<td>13</td>
<td>1011</td>
</tr>
<tr>
<td>C</td>
<td>12</td>
<td>14</td>
<td>1100</td>
</tr>
<tr>
<td>D</td>
<td>13</td>
<td>15</td>
<td>1101</td>
</tr>
<tr>
<td>E</td>
<td>14</td>
<td>16</td>
<td>1110</td>
</tr>
<tr>
<td>F</td>
<td>15</td>
<td>17</td>
<td>1111</td>
</tr>
</tbody>
</table>

Base 8

\[2^4 = 16 \]

\[84_{10} = 1110100_{2} \]

\[10_{16} = 10_{10} \]

\[28_{16} = 70_{10} \]

Second octal digit

One octal digit

Base
Binary and Octal: Electronics Likes Powers of Two

Oct	Bin
0 | 0 |
1 | 1 |
2 | 10 |
3 | 11 |
4 | 100 |
5 | 101 |
6 | 110 |
7 | 111 |

PC = \[010110111101_2\]

PC = \[0 \times 2^{11} + 1 \times 2^{10} + 0 \times 2^9 + 1 \times 2^8 + 1 \times 2^7 + 0 \times 2^6 + 1 \times 2^5 + 1 \times 2^4 + 1 \times 2^3 + 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0\]

PC = \[2675_8\]

PC = \[2 \times 8^3 + 6 \times 8^2 + 7 \times 8^1 + 5 \times 8^0\]

PC = \[1469_{10}\]
Hexadecimal Numbers

Base 16: 0 1 2 3 4 5 6 7 8 9 A B C D E F

Instead of groups of 3 bits (octal), Hex uses groups of 4.

\[
\text{CAFEFOOD}_{16} = 12 \times 16^7 + 10 \times 16^6 + 15 \times 16^5 + 14 \times 16^4 +
15 \times 16^3 + 0 \times 16^2 + 0 \times 16^1 + 13 \times 16^0 \\
= 3,405,705,229_{10}
\]

<table>
<thead>
<tr>
<th>C</th>
<th>A</th>
<th>F</th>
<th>E</th>
<th>F</th>
<th>0</th>
<th>0</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hex</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| 1100101011111111011110000000001101 |
| 3 | 1 | 2 | 7 | 7 | 5 | 7 | 0 | 0 | 1 | 5 |
| Binary |

| Octal |
Computers Rarely Manipulate True Numbers

Infinite memory still very expensive

Finite-precision numbers typical

32-bit processor: naturally manipulates 32-bit numbers

64-bit processor: naturally manipulates 64-bit numbers

How many different numbers can you represent with 5 digits?

- Binary: \(2^5 = 32\)
- Octal: \(8^5 = 32768\)
- Decimal: \(10^5 = 100,000\)
- Hexadecimal: \(16^5 = 1,048,576\)

One megabyte of memory: \(1 \times 10^6 = 1,048,576\)
Jargon

Bit Binary digit: 0 or 1

Byte Eight bits

Word Natural number of bits for the processor, e.g., 16, 32, 64

LSB Least Significant Bit ("rightmost")

MSB Most Significant Bit ("leftmost")
Decimal Addition Algorithm

\[
\begin{align*}
434 & + 628 \\
\hline
4 + 8 & = 12
\end{align*}
\]
Decimal Addition Algorithm

434
+ 628

\[\begin{array}{c}
1 \\
4 + 8 = 12 \\
1 + 3 + 2 = 6
\end{array} \]

\[\begin{array}{c}
\text{12} \\
\text{6}
\end{array} \]
Decimal Addition Algorithm

\[\begin{array}{c}
434 \\
+ \ 628 \\
\hline
62 \\
\end{array} \]

\[\begin{align*}
4 + 8 &= 12 \\
1 + 3 + 2 &= 6 \\
4 + 6 &= 10 \\
\end{align*} \]
Decimal Addition Algorithm

1 1
434
+628
062

4 + 8 = 12
1 + 3 + 2 = 6
4 + 6 = 10

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
</tr>
</tbody>
</table>
Decimal Addition Algorithm

```
   1  1
  434
+ 628
  1062
```

```
4 + 8  =  12
1 + 3 + 2  =  6
4 + 6  =  10
```

```
+  
0 | 0 1 2 3 4 5 6 7 8 9
1 | 1 2 3 4 5 6 7 8 9 10
2 | 2 3 4 5 6 7 8 9 10 11
3 | 3 4 5 6 7 8 9 10 11 12
4 | 4 5 6 7 8 9 10 11 12 13
5 | 5 6 7 8 9 10 11 12 13 14
6 | 6 7 8 9 10 11 12 13 14 15
7 | 7 8 9 10 11 12 13 14 15 16
8 | 8 9 10 11 12 13 14 15 16 17
9 | 9 10 11 12 13 14 15 16 17 18
10| 10 11 12 13 14 15 16 17 18 19
```
Binary Addition Algorithm

\[10011 + 11001 = 10100 \]

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>00</td>
<td>01</td>
</tr>
<tr>
<td>1</td>
<td>01</td>
<td>10</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>11</td>
</tr>
</tbody>
</table>
Binary Addition Algorithm

\[
\begin{array}{c}
1 \\
10011 \\
+11001 \\
\hline \\
0 \\
\end{array}
\]

\[
\begin{array}{c}
1 + 1 = 10 \\
1 + 1 + 0 = 10 \\
\end{array}
\]

\[
\begin{array}{c|c|c}
+ & 0 & 1 \\
\hline \\
0 & 0001 & \\
1 & 0110 & \\
10 & 1011 & \\
\end{array}
\]
Binary Addition Algorithm

\[
\begin{array}{c}
11 \\
10011 \\
+11001 \\
\hline
00
\end{array}
\]

\[
\begin{array}{c|c}
+ & 0 & 1 \\
\hline
0 & 00 & 01 \\
1 & 01 & 10 \\
10 & 10 & 11
\end{array}
\]

- \(1 + 1 = 10\)
- \(1 + 1 + 0 = 10\)
- \(1 + 0 + 0 = 01\)
Binary Addition Algorithm

Example:

\[
\begin{array}{c}
011 \\
10011 \\
+ 11001 \\
\hline
100
\end{array}
\]

Addition Table:

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>01</td>
</tr>
<tr>
<td>1</td>
<td>01</td>
<td>10</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>11</td>
</tr>
</tbody>
</table>

Examples:

- \(1 + 1 = 10\)
- \(1 + 1 + 0 = 10\)
- \(1 + 0 + 0 = 01\)
- \(0 + 0 + 1 = 01\)
Binary Addition Algorithm

\[
\begin{array}{c}
0011 \\
10011 \\
+11001 \\
\hline
11000
\end{array}
\]

\[
\begin{array}{l}
1 + 1 = 10 \\
1 + 1 + 0 = 10 \\
1 + 0 + 0 = 01 \\
0 + 0 + 1 = 01 \\
0 + 1 + 1 = 10
\end{array}
\]

\[
\begin{array}{c|cc}
+ & 0 & 1 \\
\hline
0 & 00 & 01 \\
1 & 01 & 10 \\
10 & 10 & 11
\end{array}
\]
Binary Addition Algorithm

\[
\begin{array}{c}
10011 \\
10011 \\
+11001 \\
\hline
101100
\end{array}
\]
Signed Numbers: Dealing with Negativity

How should we represent negative numbers?
Binary Signed Magnitude Numbers

The familiar notation: negative numbers have a leading –

Binary signed-magnitude encoding: leading 1 indicates negative; remaining bits treated as binary.

Can be made to work, but addition is annoying:

- If the signs match, add the magnitudes and use the same sign.
- If the signs differ, subtract the smaller number from the larger; return the sign of the larger.
One’s Complement Numbers

Like Signed Magnitude, a leading 1 indicates a negative One’s Complement number. However, number magnitude is complement of remaining bits interpreted as binary.

To negate a number, complement (flip) each bit.

\[
\begin{align*}
0000_2 &= 0 \\
0010_2 &= 2 \\
1101_2 &= -2 \\
1000_2 &= -7 \\
1111_2 &= -0?
\end{align*}
\]

Addition is nicer: just add the one’s complement numbers as if they were normal binary.

Really annoying having a \(-0\): two numbers are equal if their bits are the same or if one is 0 and the other is \(-0\).
NOT ALL ZEROS ARE CREATED EQUAL

ZERO CALORIES. MAXIMUM PEPSI® TASTE.
Two’s Complement Numbers

Really neat trick: just make only the most significant bit represent a *negative* number instead of positive; treat the rest as binary.

\[
\begin{align*}
1101_2 &= -8 + 4 + 1 = -3 \\
1111_2 &= -8 + 4 + 2 + 1 = -1 \\
0111_2 &= 4 + 2 + 1 = 7 \\
1000_2 &= -8
\end{align*}
\]

Easy addition: just add in binary and discard any carry.

Negation: complement each bit (as in one’s complement) then add 1.

Subtraction done with negation and addition.

Very good property: no \(-0\)

Two’s complement numbers are equal if and only if all their bits are the same.
<table>
<thead>
<tr>
<th>Code</th>
<th>Binary</th>
<th>Signed Mag.</th>
<th>One’s Comp.</th>
<th>Two’s Comp.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0001</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0111</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>1000</td>
<td>8</td>
<td>−0</td>
<td>−7</td>
<td>−8</td>
</tr>
<tr>
<td>1001</td>
<td>9</td>
<td>−1</td>
<td>−6</td>
<td>−7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1110</td>
<td>14</td>
<td>−6</td>
<td>−1</td>
<td>−2</td>
</tr>
<tr>
<td>1111</td>
<td>15</td>
<td>−7</td>
<td>−0</td>
<td>−1</td>
</tr>
</tbody>
</table>

Smallest number: 0
Largest number: 15

How many ways we represent numbers.
How many bits in his brain?

https://xkcd.com/571/

32,767, -32,768,

How many bits?
16 bits, two’s complement
Fixed-point Numbers

How to represent fractional numbers? In decimal, we continue with negative powers of 10:

\[31.4159 = 3 \times 10^1 + 1 \times 10^0 + 4 \times 10^{-1} + 1 \times 10^{-2} + 5 \times 10^{-3} + 9 \times 10^{-4} \]

Also works in binary:

\[1011.0110_2 = 1 \times 2^3 + 0 \times 2^2 + 1 \times 2^1 + 1 \times 2^0 + 0 \times 2^{-1} + 1 \times 2^{-2} + 1 \times 2^{-3} + 0 \times 2^{-4} \]
\[= 8 + 2 + 1 + 0.25 + 0.125 \]
\[= 11.375 \]

Addition and subtraction algorithms the same.
The ancient Egyptians used binary fractions:

The Eye of Horus
Humans prefer reading decimal numbers; computers prefer binary.

BCD is a compromise: every four bits represents a decimal digit.

<table>
<thead>
<tr>
<th>Dec</th>
<th>BCD</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0000 0000</td>
</tr>
<tr>
<td>1</td>
<td>0000 0001</td>
</tr>
<tr>
<td>2</td>
<td>0000 0010</td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0000 0100</td>
</tr>
<tr>
<td>5</td>
<td>0000 0101</td>
</tr>
<tr>
<td>6</td>
<td>0000 0110</td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>0000 1000</td>
</tr>
<tr>
<td>9</td>
<td>0000 1001</td>
</tr>
<tr>
<td>10</td>
<td>0001 0000</td>
</tr>
<tr>
<td>11</td>
<td>0001 0001</td>
</tr>
<tr>
<td>12</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>0001 1000</td>
</tr>
<tr>
<td>19</td>
<td>0001 1001</td>
</tr>
<tr>
<td>20</td>
<td>0010 0000</td>
</tr>
<tr>
<td>21</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td></td>
</tr>
</tbody>
</table>

Thinkgeek.com
BCD Addition

Binary addition followed by a possible correction.

Any four-bit group greater than 9 must have 6 added to it.

Example:

\[
\begin{array}{c}
0001 & 0101 & 1100 \\
+0010 & 0100 & 0010 \\
\hline
1010 \quad \text{First group}
\end{array}
\]
BCD Addition

Binary addition followed by a possible correction.

Any four-bit group greater than 9 must have 6 added to it.

Example:

\[
\begin{align*}
158 + 242 &= 39.27 \\
&= 410.00
\end{align*}
\]

\[
\begin{align*}
000101011000 + 001001000010 &= 101011010 \quad \text{First group correction} \\
&= 67.15 + 30.32
\end{align*}
\]
BCD Addition

Binary addition followed by a possible correction.

Any four-bit group greater than 9 must have 6 added to it.

Example:

```
1 158
+ 242
```

```
+001001000010
```

```
1010 Correction
```

```
10100000 Second group
```

```
000101011000
```

```
1010 First group
```

```
0110
```

```
10100000
```

```
```

```
```
BCD Addition

Binary addition followed by a possible correction.

Any four-bit group greater than 9 must have 6 added to it.

Example:

```
  1
+000101011000
+001001000010
 1010 First group correction
+0110
 10100000 Second group correction
+0110
```

```
1
158
+242
---
0
```
BCD Addition

Binary addition followed by a possible correction.

Any four-bit group greater than 9 must have 6 added to it.

Example:

\[
\begin{array}{cccccc}
1 & 1 & 1 & 1 & 1 & 1 \\
0001 & 0101 & 1100 & +0010 & 0100 & 0010 \\
\hline
1010 & + & 0110 & \text{Correction} \\
10100000 & \text{Second group} & & & & \text{Correction} \\
+ & 0110 & \text{Correction} & & & \\
01000000 & \text{Third group} & & & & \\
\end{array}
\]
BCD Addition

Binary addition followed by a possible correction.

Any four-bit group greater than 9 must have 6 added to it.

Example:

\[
\begin{align*}
11 + 6 &= 16 \\
11 + 6 &= 17
\end{align*}
\]

\[
\begin{array}{c}
000101011000 \\
+001001000010 \\
\hline
10100000 \\
\text{Correction}
\end{array}
\]

\[
\begin{array}{c}
1010 \\
+0110 \\
\hline
10100000 \\
\text{Second group Correction}
\end{array}
\]

\[
\begin{array}{c}
01000000 \\
+0110 \\
\hline
01000000 \\
\text{Third group (No correction)}
\end{array}
\]

\[
010000000000 \\
\text{Result}
\]

16 codes - 10 symbols

combination
Floating-Point Numbers: “Scientific Notation”

Greater dynamic range at the expense of precision
Excellent for real-world measurements

IEEE 754 Single-Precision (32-bit)

\[
\begin{array}{cccccc}
\text{Sign} & \text{8-bit Exponent} & \text{23-bit Fraction} \\
1 & 10000001 & 0110000000000000000000000000000
\end{array}
\]

- **Sign bit**
 - 0: Positive
 - 1: Negative
- **8-bit Exponent**
 - Stored as an 8-bit integer, with a bias of 127.
- **23-bit Fraction**
 - Also known as the *mantissa*.

Example Calculation

- **Binary Representation**:
 \[\begin{array}{c}
 1.01100002 \\
 \times
 \begin{array}{c}
 2^{1000000012-127}
 \end{array}
 \end{array}\]

- **Decimal Representation**:
 \[\begin{array}{c}
 -1.375 \times 2^2 \\
 = -5.5
 \end{array}\]
ASCII For Representing Characters and Strings

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>NUL</td>
<td>DLE</td>
<td>SP</td>
<td>0</td>
<td>@</td>
<td>P</td>
<td>'</td>
</tr>
<tr>
<td>1</td>
<td>SOH</td>
<td>DC1</td>
<td>!</td>
<td>1</td>
<td>A</td>
<td>Q</td>
<td>a</td>
</tr>
<tr>
<td>2</td>
<td>STX</td>
<td>DC2</td>
<td>"</td>
<td>2</td>
<td>B</td>
<td>R</td>
<td>b</td>
</tr>
<tr>
<td>3</td>
<td>ETX</td>
<td>DC3</td>
<td>#</td>
<td>3</td>
<td>C</td>
<td>S</td>
<td>c</td>
</tr>
<tr>
<td>4</td>
<td>EOT</td>
<td>DC4</td>
<td>$</td>
<td>4</td>
<td>D</td>
<td>T</td>
<td>d</td>
</tr>
<tr>
<td>5</td>
<td>ENQ</td>
<td>NAK</td>
<td>%</td>
<td>5</td>
<td>E</td>
<td>U</td>
<td>e</td>
</tr>
<tr>
<td>6</td>
<td>ACK</td>
<td>SYN</td>
<td>&</td>
<td>6</td>
<td>F</td>
<td>V</td>
<td>f</td>
</tr>
<tr>
<td>7</td>
<td>BEL</td>
<td>ETB</td>
<td>’</td>
<td>7</td>
<td>G</td>
<td>W</td>
<td>g</td>
</tr>
<tr>
<td>8</td>
<td>BS</td>
<td>CAN</td>
<td>(</td>
<td>8</td>
<td>H</td>
<td>X</td>
<td>h</td>
</tr>
<tr>
<td>9</td>
<td>HT</td>
<td>EM</td>
<td>)</td>
<td>9</td>
<td>I</td>
<td>Y</td>
<td>i</td>
</tr>
<tr>
<td>A</td>
<td>LF</td>
<td>SUB</td>
<td>*</td>
<td>:</td>
<td>J</td>
<td>Z</td>
<td>j</td>
</tr>
<tr>
<td>B</td>
<td>VT</td>
<td>ESC</td>
<td>+</td>
<td>;</td>
<td>K</td>
<td>[</td>
<td>k</td>
</tr>
<tr>
<td>C</td>
<td>FF</td>
<td>FS</td>
<td>,</td>
<td><</td>
<td>L</td>
<td>\</td>
<td>l</td>
</tr>
<tr>
<td>D</td>
<td>CR</td>
<td>GS</td>
<td>–</td>
<td>=</td>
<td>M</td>
<td>]</td>
<td>m</td>
</tr>
<tr>
<td>E</td>
<td>SO</td>
<td>RS</td>
<td>.</td>
<td>></td>
<td>N</td>
<td>^</td>
<td>n</td>
</tr>
<tr>
<td>F</td>
<td>SI</td>
<td>US</td>
<td>/</td>
<td>?</td>
<td>O</td>
<td>__</td>
<td>o</td>
</tr>
</tbody>
</table>