
Parallel Greedy ​Tetris​ Solver
COMS 4995 Parallel Functional Programming: Final Project Report

Trey Gilliland (jlg2266), Derek Zhang (dhz2104)

1 Abstract

Tetris​ is a retro tile-matching based video game in which the objective is to place a stream of
descending pieces called “Tetrominoes” to fill up the rows of a 20x10 grid such that the user can
place as many pieces as possible without the highest column exceeding 20 units. Placing pieces in a
manner to complete the rows as efficiently as possible is advantageous as rows are cleared as they
are completed, leaving more space for future Tetrominoes. We implement a heuristic-based search
algorithm to develop a parallelized ​Tetris​ “solver” to place the current Tetromino in the most
optimal position based on searching for the most optimal placement of the future N pieces exposed
to the user. Our Haskell implementation is ~360 lines and our parallelization led to a 2.89x speedup
over the sequential search implementation.

2 Background

Among the many different versions of ​Tetris​, we decided to develop our solver on the original
version of the game. In this version, the sole objective of the user is to place as many Tetrominoes
as possible on a 20x10 board without the tallest column of placed units in the board exceeding the
20 unit height limit. Each time a row is filled completely with units the row is cleared from the
board, leaving more room for future Tetrominoes. These Tetrominoes descend 1 unit at a time from
the top of the board and as the user places more Tetrominoes, the descending speed increases. The
user is able to rotate and move the Tetromino left and right while it is descending. There are 7
different Tetrominoes made up of 4 units each in various configurations as seen in Figure 2.1. When
considering their rotations as unique pieces, there are a total of 19 different piece configurations.

3 Search Algorithm

Our solver is based around a heuristic-based depth-breadth hybrid search on all possible
Tetromino placements on a given board. Our heuristics, weights, and approach has been adapted
from a sequential JavaScript implementation by Yiyuan Lee​1​. The depth of the search can be easily
adjusted and performance varies as the search grows exponentially. As the entire search space for a

1 https://codemyroad.wordpress.com/2013/04/14/tetris-ai-the-near-perfect-player/

single Tetromino is excessively large and we could not search multiple depths in a reasonable
amount of time, we use a “greedy” approach where we assume the optimal placement for a
Tetromino can be achieved by placing all of its possible rotations in each of the board’s columns
and choosing the placement that returns the highest score for the resulting board. The formula we
use to score a board can be seen in Figure 3.1. The heuristics are as follows:

1. AggregateHeight is a sum over all the column heights and should be minimized as the user
wants to keep their columns from exceeding the board height limit.

2. LinesCleared is a count of all the complete lines in a board prior to the rows being cleared
and should be maximized as clearing a line leaves more room to place future Tetrominoes.

3. Holes is a count of all the enclosed gaps in the board and should be minimized as the row
above enclosing the gap would need to be cleared before the row containing the gap could
be cleared from the board.

4. Bumpiness is a sum of all absolute value differences of adjacent columns and should be
minimized so that the column heights are evenly distributed allowing for a greater chance
of completing a row.

4 Implementation

Our implementation revolves around the ​Data.Matrix​ package to represent a ​Board​. A single
rotation of a ​Tetromino​ can be represented as the ​Piece​ type: a list of 4 coordinate offsets from the
bottom-left corner of a 4x4 matrix. Each coordinate represents the spot where a unit would be
placed in a 4x4 matrix to represent a Tetromino rotation. The ​Tetromino​ newtype consists of a list
of ​Pieces​ which represent its rotations. We use 7 ​Tetromino​ instances (I, O, Z, S, T, J, L) to match the
7 possible Tetrominoes used in ​Tetris. ​A ​BoardMove​ is a representation of the current state of the
board in between placements and consists of a ​Board, Piece ​representing the last piece placed on
the board, and a double representing the score of the board. A ​BoardState ​is an intermediate type
used in the search algorithm consisting of a ​Board​, the current ​Piece ​to be placed, and the current
location of the ​Piece ​prior to being placed. Placing the piece in a ​BoardState​ converts it into a
BoardMove​ and is outputted to the console at each step.

Our search is centered around a ​getBestMove​ method which takes in a list of the next N
Tetrominoes exposed to the user and a ​Board ​to​ ​return a ​BoardMove ​representing the best
placement of the first Tetromino in the list onto the board. This method does this by generating a
list of all possible ​BoardMoves​ using ​getPossibleBoards ​where the score is the score of the best
BoardMove​ in the deepest level of the search path extending from the placement and selects the
Board with the highest score to be the most optimal placement. The search tree is searched over
through the ​nextTick​ method which places the first Tetromino on the board in a particular rotation
and column, and then searches its search subtree for the best possible score on the final depth level.

The user can supply a number N representing the number of N Tetrominoes to place onto
an empty board through the ​placeN ​method on an interactive console or a filename containing a
space separated string of numbers to run through a compiled executable.

5 Parallelization
In order to parallelize our code, we used the Par monad. The Par monad provides a simple API that
enables deterministic, dataflow-based parallel programming. The command ​runPar ​completely
evaluates Par monad's functions in parallel before continuing. Up to a point, therefore, increasing
the number of cores decreases the time necessary to complete all operations within the monad. In
our ​getBestMove ​function, we used a ​parMap​ to split and parallelize each row-piece rotation
combination and run the ​nextTick​ function in parallel. As can be seen in the chart below, which was
created by running our algorithm using the same input Tetromino list over a variety of cores, this
method provides significant speedups when the number of available cores is increased. As the
number of cores continues to increase, however, the high number of cores does more harm than
good, and the time elapsed ends up increasing again. This is because there is significant overhead in
managing garbage collection and synchronizing between the different threads, causing a drop in
performance.

We found that the Par monad provides superior performance compared to other methods of
parallelization like the Eval monad. This is likely because the Par monad forces parallel
computation by manually creating the user-specified parallel tasks, whereas the Eval monad can
create a large number of sparks that can often fizzle or be garbage-collected, depending on the
compiler settings and flags used. Because we can manage the threads created more directly, the Par
monad provides more consistent speedups and load distribution. However, both methods are a
means to the same end goal of speeding up the program by distributing work across multiple
processors.

This parallelization significantly reduces the time necessary to calculate the best possible score of
the current piece rotation and column, and given the next ​N ​pieces. However, there were other
parts of the program that we did not parallelize, such as the printing of the boards at each step and
the ​getBestBoard ​function. However, our load distribution and performance improvements were
still very good because the ​nextTick ​calculation is by far the most expensive and time consuming

operation within the program, as it traverses all possible search trees for the next ​N ​pieces via a
DFS to find the optimal board score for the current placement.

6 Performance

Using the Par monad enabled us to get significant performance benefits over our original sequential
implementation. In the following examples, we looked ahead by four pieces to determine the
optimal board score for each piece rotation-column combination at each step. As can be seen in the
command-line output, the total time for the multi-core runs exceeds the time elapsed, showing that
the different cores were doing a large amount of work in parallel. As the number of cores increases,
the GC time and the total time increase, showing that a large amount of overhead is necessary to
synchronize and manage the different cores. Despite this, due to parallelization, the overall
performance improves significantly. In the end benchmark, we achieved a 2.89x speedup over the
sequential search implementation.

1 Core:

2 Cores:

4 Cores:

7 Possible Future Work

Tetris​ has hundreds of official and unofficial variants which all have their own unique twist on
platforms, scoring, size of the board, tetrominoes, multiplayer, and more. Our algorithm has been
designed with this in mind and could easily be modified to work using different style Tetrominos,
board sizes, number of future Tetrominoes exposed to the user (representing search depth), search
heuristics, and more as long as the most basic ​Tetris​ rules are followed. A search over the entire
possible search space for a Tetromino placement could be designed and easily inserted into our
code as long as it could be interfaced through the ​getBestMove​ method type constraints. Finally,
despite looking forward to a certain number of pieces, the board sometimes still fills up completely
after a very large number of pieces have been placed. With more time, we could tune the weights
and add additional heuristics in order to prevent failure.

8 Code

Our code consists of a main file Tetris.hs and 3 supporting modules: AI.hs, Helpers.hs, and Types.hs
In total, our code (including comments) spans ~360 lines all written in Haskell. We utilize the
Data.Matrix, System.Random, and Control.Monad.Par libraries and they will need to be installed to
compile our code.

Tetris.hs

-- Imports

import​ AI
import​ Control.Applicative
import​ Control.Monad.Par
import​ Data.List

import​ Helpers
import​ System.Environment
import​ System.Exit
import​ System.IO (​hPutStrLn​, ​stderr​)
import​ Types

-- MAIN METHOD

-- main method version for reading space-separated integers from 0-6,

representing a predefined tetromino order
main​ :: ​IO​ ()
main​ = ​do
 args <- getArgs

 ​case​ args ​of
 [filename] -> ​do
 ​-- read in file
 ​-- convert to lines
 ​-- do this function below for all lines in file
 contents <- readFile filename

 ​let​ strings = words contents
 li = map read strings :: [​Int​]
 board = createBoard
 pieceList = map randomPiece li ​-- list of random pieces
 tupleList = take (length pieceList - ​4​ + ​1​) (map (take ​4​) (tails
pieceList))

 gameloop tupleList (​Just​ (​BoardMove​ board ​Nothing​ ​0​))
 return ()

 _ -> ​do
 pn <- getProgName ​-- Usage message
 hPutStrLn stderr $ ​"Usage: "​ ++ pn ++ ​" <file name>"
 exitFailure

-- -- ALTERNATE MAIN METHOD
-- -- gets the N input from the user and places N random pieces in their

best position starting from an empty board

-- main :: IO ()

-- main = do
-- args <- getArgs

-- case args of

-- [n] -> do

-- li <- generateNList (read n :: Int)
-- let board = createBoard

-- pieceList = map randomPiece li -- list of random pieces

-- searchDepth = 4
-- -- create a search depth length list of next pieces, currently

using a search depth of 4

-- tupleList = take (length pieceList - searchDepth + 1) (map

(take searchDepth) (tails pieceList))
-- gameloop tupleList (Just (BoardMove board Nothing 0))

-- return ()

-- _ -> do
-- pn <- getProgName -- Usage message

-- hPutStrLn stderr $ "Usage: " ++ pn ++ " <n tetrominos>"

-- exitFailure

-- interactive method for passing in an N and running the game loop for a

randomPiece list sequentially

placeN​ :: ​Int​ -> ​IO​ ()
placeN​ n = ​do​ li <- generateNList n
 ​let​ board = createBoard
 pieceList = map randomPiece li ​-- list of random pieces
 searchDepth = ​4
 ​-- create a search depth length list of next pieces,
currently using a search depth of 4

 tupleList = take (length pieceList - searchDepth + ​1​)
(map (take searchDepth) (tails pieceList))

 gameloop tupleList (​Just​ (​BoardMove​ board ​Nothing​ ​0​))
 return ()

-- recursive helper method for main to place all pieces in a Tetromino list

gameloop​ :: [[​Tetromino​]] -> ​Maybe​ ​BoardMove​ -> ​IO​ ()
gameloop​ _ ​Nothing​ = putStrLn ​"Failed to complete board!"
gameloop​ [] _ = putStrLn ​"Finished successfully!"
gameloop​ (current : rest) (​Just​ (​BoardMove​ board piece score)) = ​do
 putStrLn $ show (​BoardMove​ board piece score)
 boardMove <- getBestMove current board

 gameloop rest boardMove

-- Given a list of next N Tetrominos and a board, return the best possilbe
placement for the first Tetromino in the list

getBestMove​ :: [​Tetromino​] -> ​Board​ -> ​IO​ (​Maybe​ ​BoardMove​)
getBestMove​ [] _ = return ​Nothing
getBestMove​ (​Tetromino​ pieces : xs) board = ​do
 ​let​ li = runPar $ parMap (\(piece, c) -> startNextTick xs (​BoardState
board piece (​5​, c))) (liftA2 (,) pieces [​1​ .. ​10​])

 ans = getBestBoard li
 return ans

-- return a list of all possible placements of the first Tetromino

searching over the search space for the rest of the Tetrominoes to
calculate the best placement

getPossibleBoards​ :: [​Tetromino​] -> ​Board​ -> [​Maybe​ ​BoardMove​]
getPossibleBoards​ [] _ = [​Nothing​]
getPossibleBoards​ ((​Tetromino​ pieces) : xs) board = map (\(piece, c) ->
nextTick xs (​BoardState​ board piece (​5​, c)) ​GoDown​) (liftA2 (,) pieces [​1
.. ​10​])

-- Action Enum type to represent which action to do in nextTick
data​ ​Action​ = ​GoDown​ | ​Place

-- search the search path for the best board at max depth for a given piece

and location representing the column to be placed in
startNextTick​ :: [​Tetromino​] -> ​BoardState​ -> ​Maybe​ ​BoardMove
startNextTick​ tetrominos bs = nextTick tetrominos bs ​GoDown

nextTick​ :: [​Tetromino​] -> ​BoardState​ -> ​Action​ -> ​Maybe​ ​BoardMove
nextTick​ tetrominos (​BoardState​ board piece loc) ​GoDown
 | doesNotOverlap (​BoardState​ board piece loc) =
 getBestBoard [nextTick tetrominos (​BoardState​ board piece (fst loc + ​1​,
snd loc)) ​GoDown​, nextTick tetrominos (​BoardState​ board piece (fst loc + ​1​,
snd loc)) ​Place​]
 | otherwise = ​Nothing
nextTick​ tetrominos (​BoardState​ board piece loc) ​Place
 | not $ isValidPlacement (​BoardState​ board piece loc) = ​Nothing
 | otherwise = ​do
 newBoard <- putPiece (​BoardState​ board piece loc)
 ​let​ newBoardCleared = clearRows newBoard
 bestBoard [] = ​Nothing
 bestBoard (_ : xs) = getBestBoard $ getPossibleBoards xs

newBoardCleared

 return $ ​BoardMove​ newBoardCleared (​Just​ piece) (getScore (bestBoard
tetrominos) newBoard)
 ​where
 getScore (​Just​ (​BoardMove​ _ _ score)) _ = score
 getScore ​Nothing​ currentBoard = scoreBoard currentBoard

-- given a list of scored boards in BoardMoves, return the board with the

highest max score

AI.hs
module​ ​AI​ ​where

-- Imports

import​ ​Data.Matrix
import​ ​Types
import​ ​Helpers

-- weights type used to calculate the score

data​ ​Weights​ = Weights
 { ​heightWeight​ :: ​Double​,
 ​linesWeight​ :: ​Double​,
 ​holesWeight​ :: ​Double​,
 ​bumpinessWeight​ :: ​Double
 }

-- method to return hardcoded weights for use in scoring function

getWeights​ :: ​Weights
getWeights =

 Weights

 { ​heightWeight​ = ​0.810066​,
 ​linesWeight​ = ​0.760666​,
 ​holesWeight​ = ​0.35663​,
 ​bumpinessWeight​ = ​0.184483
 }

getBestBoard​ :: [​Maybe​ ​BoardMove​] -> ​Maybe​ ​BoardMove
getBestBoard​ boardMoves = getBestBoardHelper ​Nothing​ boardMoves

getBestBoardHelper​ :: ​Maybe​ ​BoardMove​ -> [​Maybe​ ​BoardMove​] -> ​Maybe
BoardMove
getBestBoardHelper​ currentBest [] = currentBest
getBestBoardHelper​ ​Nothing​ (x : xs) = getBestBoardHelper x xs
getBestBoardHelper​ (​Just​ (​BoardMove​ board piece score)) ((​Just​ (​BoardMove
newBoard newPiece newScore)) : xs)
 | newScore > score = getBestBoardHelper (​Just​ (​BoardMove​ newBoard
newPiece newScore)) xs

 | otherwise = getBestBoardHelper (​Just​ (​BoardMove​ board piece score)) xs
getBestBoardHelper​ currentBest (_ : xs) = getBestBoardHelper currentBest xs

-- score a board using a given set of weights

scoreBoardWithWeights​ :: ​Board​ -> ​Weights​ -> ​Double
scoreBoardWithWeights board weights = linesVal - heightVal - holesVal -

bumpinessVal

 ​where
 heightVal = (heightWeight weights) * (fromIntegral $ aggregateHeight

board)

 linesVal = (linesWeight weights) * (fromIntegral $ completeLines board)

 holesVal = (holesWeight weights) * (fromIntegral $ holes board)

 bumpinessVal = (bumpinessWeight weights) * (fromIntegral $ bumpiness

board)

-- score a board using the default set of weights

scoreBoard​ :: ​Board​ -> ​Double
scoreBoard board = scoreBoardWithWeights board getWeights

-- calculate the aggregateHeight of a board

aggregateHeight​ :: ​Board​ -> ​Int
aggregateHeight board = sum $ getHeights $ toLists $ transpose board

getHeights​ :: [[​Int​]] -> [​Int​]
getHeights lists = map getHeight lists

getHeight​ :: [​Int​] -> ​Int
getHeight ​[]​ = ​0
getHeight (x : xs)

 | x == ​1​ = length xs + ​1
 | otherwise = getHeight xs

-- count the completeLines in a board where the rows haven't been cleared

yet

completeLines​ :: ​Board​ -> ​Int
completeLines board = length $ getFullRowIndexes ​0​ ​[]​ (toLists board)

-- count the number of enclosed holes in a board

holes​ :: ​Board​ -> ​Int
holes board = foldl (\count arr -> count + getHolesInArr ​0​ False arr) ​0
transposedBoardList

 ​where

 transposedBoardList = toLists $ transpose board

getHolesInArr​ :: ​Int​ -> ​Bool​ -> [​Int​] -> ​Int
getHolesInArr count _ ​[]​ = count
getHolesInArr count started (x : xs)

 | (x == ​1​) && not started = getHolesInArr count True xs
 | (x == ​0​) && started = getHolesInArr (count + ​1​) True xs
 | otherwise = getHolesInArr count started xs

-- calculuate the bumpiness of a boards columns

bumpiness​ :: ​Board​ -> ​Int
bumpiness board = sum $ getHeightDiffs $ getHeights $ toLists $ transpose

board

getHeightDiffs​ :: [​Int​] -> [​Int​]
getHeightDiffs diffs = map abs $ zipWith (​-​) diffs (drop ​1​ diffs)

Helpers.hs
module​ ​Helpers​ ​where

-- Imports

import​ ​Data.Matrix
import​ ​System.Random
import​ ​Types

-- generates n random numbers in a list, helper for creating random

Tetromino list

generateNList​ :: ​Int​ -> ​IO​ [​Int​]
generateNList n = sequence $ replicate n $ randomRIO (​0​, ​6​ :: ​Int​)

-- maps an integer to a Tetromino, helper for creating random Tetromino

list

randomPiece​ :: ​Int​ -> ​Tetromino
randomPiece r = ​case​ r ​of
 ​0​ -> tetrominoI
 ​1​ -> tetrominoO
 ​2​ -> tetrominoS

 ​3​ -> tetrominoZ
 ​4​ -> tetrominoT
 ​5​ -> tetrominoJ
 ​6​ -> tetrominoL
 _ -> error ​"invalid piece"

-- BOARD METHODS

-- creates empty board, starting point for placeN call

createBoard​ :: ​Matrix​ ​Int
createBoard = zero ​25​ ​10

-- takes top 5 rows off of matrix (buffer rows for piece placement) and

prints the board

printBoard​ :: ​Board​ -> ​IO​ ()
printBoard board = ​do
 ​let​ slice = submatrix ​6​ ​25​ ​1​ ​10​ board
 print slice

 return ​()

-- clears rows of all 1s from a board

clearRows​ :: ​Board​ -> ​Board
clearRows board = listsAsMatrix

 ​where
 matrixAsLists = toLists board

 clearFromRows = foldr removeIndex matrixAsLists (getFullRowIndexes ​0​ ​[]
matrixAsLists)

 removeIndex index list = [replicate ​10​ ​0​] ++ take index list ++ tail
(drop index list)

 listsAsMatrix = fromLists clearFromRows

-- helper for clearing rows, get indices of all full 1 rows

getFullRowIndexes​ :: ​Int​ -> [​Int​] -> [[​Int​]] -> [​Int​]
getFullRowIndexes _ currList ​[]​ = currList
getFullRowIndexes currIndex currList (x : xs) = getFullRowIndexes

(currIndex + ​1​) (appendedCurrList x currIndex currList) xs
 ​where
 appendedCurrList vals index list

 | all (== ​1​) vals = index : list
 | otherwise = list

-- BOARDSTATE METHODS

-- converts a BoardState into a Board by placing its piece at its location

putPiece​ :: ​BoardState​ -> ​Maybe​ ​Board
putPiece (BoardState board piece loc) = foldr fillLoc (Just board) piece

 ​where
 fillLoc _ Nothing = Nothing

 fillLoc pieceLoc (Just myBoard) = safeSet ​1​ (fst loc - fst pieceLoc,
snd loc + snd pieceLoc) myBoard

-- determines if the piece in BoardState could be placed

isValidPlacement​ :: ​BoardState​ -> ​Bool
isValidPlacement (BoardState board piece loc) = doesNotOverlap (BoardState

board piece loc) && any isOnGround piece && any isBelowBuffer piece && fst

loc > ​5
 ​where
 isBelowBuffer (r, _) = fst loc - r > ​5
 isOnGround (r, c)

 | safeGet (fst loc - r + ​1​) (snd loc + c) board == Just ​1​ = True
 | (fst loc - r + ​1​ == nrows board + ​1​) && (r == ​0​) = True
 | otherwise = False

-- helper function to isValidPlacement to check if a piece overlaps with

already placed pieces

doesNotOverlap​ :: ​BoardState​ -> ​Bool
doesNotOverlap (BoardState board piece loc) = all (isValidLoc .

safeGetVal) piece

 ​where
 safeGetVal (r, c) = safeGet (fst loc - r) (snd loc + c) board

 isValidLoc (Just ​0​) = True
 isValidLoc _ = False

Types.hs
{-# LANGUAGE DeriveGeneric #-}

module​ ​Types​ ​where

-- Imports

import​ ​Data.Matrix
import​ ​Control.DeepSeq
import​ ​GHC.Generics​ (​Generic​)

-- (row, column) representation for the matrix board representation

type​ ​Location​ = (​Int​, ​Int​)

-- a piece represents a unique rotation of a Tetromino

type​ ​Piece​ = [​Location​]

-- a representation of the game Board

type​ ​Board​ = ​Matrix​ ​Int

-- Tetromino is a list of all possible rotations of a Tetromino

newtype​ ​Tetromino​ = Tetromino [​Piece​]

-- BoardState is an intermediate state for the search representing a

board, a piece, and its current location

data​ ​BoardState​ = BoardState ​Board​ ​Piece​ ​Location

-- Used to represent the score of a Board and the most recently placed

piece

data​ ​BoardMove​ = BoardMove ​Board​ (​Maybe​ ​Piece​) ​Double​ ​deriving​ ​Generic

instance​ ​NFData​ ​BoardMove

-- show method for BoardMove

instance​ ​Show​ ​BoardMove​ ​where
 show (BoardMove board piece score) = ​"​\n​Score: "​ ++ show score ++ ​"​\n
Tetromino: ​\n​"​ ++ tetrominoBoard ++ ​"​\n​Board:​\n​"​ ++ show slice
 ​where
 tetrominoBoard = tetrominoDisplay blankBoard piece

 blankBoard = zero ​4​ ​4
 slice = submatrix ​6​ ​25​ ​1​ ​10​ board

-- print method for displaying a tetromino onto a board

tetrominoDisplay​ :: ​Board​ -> ​Maybe​ ​Piece​ -> ​String
tetrominoDisplay _ Nothing = ​"No tetromino selected"

tetrominoDisplay board (Just ​[]​) = show board
tetrominoDisplay board (Just (x : xs)) = tetrominoDisplay (setElem ​1
((nrows board) - (fst x), ​1​ + snd x) board) (Just xs)

-- all tetromino instances

tetrominoI​ :: ​Tetromino
tetrominoI = Tetromino [[(​0​, ​0​), (​1​, ​0​), (​2​, ​0​), (​3​, ​0​)], [(​0​, ​0​), (​0​, ​1​),
(​0​, ​2​), (​0​, ​3​)]]

tetrominoO​ :: ​Tetromino
tetrominoO = Tetromino [[(​0​, ​0​), (​0​, ​1​), (​1​, ​0​), (​1​, ​1​)]]

tetrominoZ​ :: ​Tetromino
tetrominoZ = Tetromino [[(​1​, ​0​), (​1​, ​1​), (​0​, ​1​), (​0​, ​2​)], [(​0​, ​0​), (​1​, ​0​),
(​1​, ​1​), (​2​, ​1​)]]

tetrominoS​ :: ​Tetromino
tetrominoS = Tetromino [[(​0​, ​0​), (​0​, ​1​), (​1​, ​1​), (​1​, ​2​)], [(​0​, ​1​), (​1​, ​1​),
(​1​, ​0​), (​2​, ​0​)]]

tetrominoT​ :: ​Tetromino
tetrominoT =

 Tetromino

 [[(​0​, ​0​), (​0​, ​1​), (​0​, ​2​), (​1​, ​1​)],
 [(​0​, ​0​), (​1​, ​0​), (​2​, ​0​), (​1​, ​1​)],
 [(​1​, ​0​), (​1​, ​1​), (​1​, ​2​), (​0​, ​1​)],
 [(​1​, ​0​), (​0​, ​1​), (​1​, ​1​), (​2​, ​1​)]
]

tetrominoJ​ :: ​Tetromino
tetrominoJ =

 Tetromino

 [[(​0​, ​0​), (​0​, ​1​), (​1​, ​1​), (​2​, ​1​)],
 [(​0​, ​0​), (​1​, ​0​), (​0​, ​1​), (​0​, ​2​)],
 [(​0​, ​0​), (​1​, ​0​), (​2​, ​0​), (​2​, ​1​)],
 [(​1​, ​0​), (​1​, ​1​), (​1​, ​2​), (​0​, ​2​)]
]

tetrominoL​ :: ​Tetromino
tetrominoL =

 Tetromino

 [[(​0​, ​0​), (​1​, ​0​), (​2​, ​0​), (​0​, ​1​)],
 [(​0​, ​0​), (​1​, ​0​), (​1​, ​1​), (​1​, ​2​)],
 [(​2​, ​0​), (​2​, ​1​), (​1​, ​1​), (​0​, ​1​)],
 [(​0​, ​0​), (​0​, ​1​), (​0​, ​2​), (​1​, ​2​)]
]

