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Introduction and Background 
 
Searching a collection of documents for keywords is a well studied and frequently implemented 
problem. We have implemented a search engine which indexes a collection of documents and 
then takes a set of keywords, and returns the most relevant documents in relation to those 
keywords. 
 
In order to search a collection of documents for one or more keywords, a metric must be 
established for how relevant each document is to the keywords specified.​TFIDF ​is a widespread 
method to determine the relevance of words within a document. TFIDF stands for term 
frequency inverse document frequency. We designed a document indexing and search system 
using TFIDF for keyword extraction and giving documents a relevance score.  
 
We built a system that loaded and indexed a set of documents inputted as raw, unformatted 
text, and then supported querying on top of the indexed documents. 
 
Software design 
The search engine pipeline consisted of two components - the ingestion and the search. 
 

a. Ingestion: 
The documents were loaded from a user-specified file or directory. In the case of the file, 
each line was considered to be a distinct document. For each document, the count of the 
number of occurrences of each word in the document was computed and stored at the 
document level. Then, for each word globally, a count was computed of how many 
documents the word appears in. After this was done, at the document level, we divided 
the count of occurrences of each word by the number of documents it appeared in 
globally to compute TFIDF for the word for the document.  

b. Searching: 
A user entered string was tokenized into a set of keywords. For each document, we 
assigned a score, which was the sum of the tfidf scores of the keywords that appeared 
both in the search string and in the document. Initially the documents were sorted by 
score and the top 5 were returned, however we then switched to a maximum as 
maximum is faster than sorting. 

https://en.wikipedia.org/wiki/Tf%E2%80%93idf#Term_frequency_2


 
 

Experimental Design 
In order to profile the search engine, we wanted to do a number of experiments to isolate the 
effects of parallelism, document size, and number of documents on performance.  
We designed a series of experiments to try to measure these different factors in relative 
isolation.  
For all of the experiments we performed, we used the tweets from a Kaggle dataset: 
https://www.kaggle.com/thoughtvector/customer-support-on-twitter​. There were around 3 million 
tweets, and we reduced these tweets into datasets of 100,000, 500,000, 1,000,000, and 
1,500,000 tweets (experimentally, we found that 1,500,000 tweets is the most that our software 
could handle on 16gb of ram before becoming IO bound due to swapping to and from disk). We 
took the 100,000 tweet dataset, and turned it into 12 very long documents of approximately 
equal length by concatenating tweets together in order to simulate "large" texts. 
We tried to time the individual components (represented by arrows in the component design), 
starting specifically with the "search" components (reading, scoring, and max-ing keywords). We 
also tried to get end-to-end timings. 
Tweets are a good data set because they're easy to obtain, fairly predictable in nature (ie: 
they're all approximately the same length, use the same kind of casual tone, and in the case of 
our data set, were overwhelmingly in English, meaning that there were no special characters to 
contend with, and they were all fair game from a search results perspective). 
 
The 4 experiments that we did were: 

1. Find the effects of parallelism on the search mechanism components 
2. Find the effects of parallelism in combination with number of documents on the 

end-to-end timing of ingestion and search 

https://www.kaggle.com/thoughtvector/customer-support-on-twitter


3. Find the effects of parallelism in combination with size of documents on the end-to-end 
timing of ingestion and search 

4. Find the effects of chunk size on performance 
 
 
Experiment 1: Timing Individual Components 
In order to try to evaluate the effects of parallelism on each of the components of the 
architecture (represented by arrows in the diagram), we tried to force Haskell to perform 
operations sequentially and get timestamps in between each operation. The below code sample 
illustrates our method: we tried to get a timestamp, perform each step of the search operation, 
and then get another timestamp. We printed the difference between the timestamps, which we 
expected to be indicative of the amount of time it took to perform each step. We tried seq, 
deepseq and no seq at all, and we found that unless we used deepseq, the difference between 
cpuTime0 and cpuTime1 and cpuTime2 was all 0 with all the time being measured between 
cpuTime2 and cpuTime3. We hoped that this design would give us a very granular 
measurement of the relationship between number of threads and component performance. We 
had a sequential version of the code (where the parMap below was replaced by a simple map), 
and we compared the sequential timings to the 2 thread and 4 thread timings of the parallel 
version. 

 
Experiment 2 a and b - End to End Time and Multiple Threads 
We wanted to measure the effects of parallelism on the end-to-end timing of the system (which 
included reading the documents, indexing them, and performing one search). We did some 
preliminary experiments to determine what we should measure (in terms of number of threads, 
number of documents, etc). We then created a Python script which would invoke the indexing 
program 10 times and time its execution each of those times, writing the results to a csv (the 
results were written to stdout and then piped into a csv). It repeated this for 1 to 5 threads (we 
determined in preliminary tests that above 5 threads, adding another thread meant adding more 
time to the execution, so we stopped at 5 because we wanted one run to illustrate that more 
threads than physical cores would always be slower than multithreading for our code). This 
script was used to test different scenarios (input documents changing and input documents of 
different sizes). 
For these experiments we used parListChunk as our parallelization strategy (initial experiments 
showed that parMap with any number of threads was slower than regular map, likely due to the 
overhead of making sparks, as our map operations were relatively cheap, computationally 



speaking).  We used 32 chunks, as that seemed like a reasonable number (we expected to go 
up to 8 threads initially, so each thread would do 4 chunks of work on average; if we used fewer 
chunks, one chunk hanging would cause all the other threads to idle while it finished, and we 
figured that with 4 chunks per thread, if one chunk took twice as long as the others, another 
thread would be able to pick up the remaining chunks from the thread, leading to reduced idle 
time).  
 
Experiment 2a: Relationship between Number of Documents and End-To-End time 
We used our test harness to test the change in execution time in relation to change in number of 
documents. We used 100,000, 500,000, 1,000,000, and 1,500,000 tweets. The reason that 1.5 
million was chosen is because we observed that for the whole corpus, the time was enormous 
(3 million documents took around 700 seconds), and further investigation showed that ram was 
filling up completely, likely causing more time to be spent swapping to and from disk. 1.5 million 
was the smallest number of tweets that filled up ram completely, so we used that to illustrate the 
effects of having a memory-bound computation. 
 
Experiment 2b: Relationship between Document Size and End-To-End time 
We used our test harness to test the change in execution time in relation to the size of the 
documents. We took our 100k tweet sample file and we turned it into 12 approximately equal 
sized documents by combining adjacent tweets. 
 
Experiment 3: Relationship between Chunk Size and End-To-End Time 
Since parMap failed our expectation when there were too many documents, we would like to 
explore how the number of chunks would affect the parallelism. We tested upto 4 threads with 4 
chunks, 12 chunks, and 20 chunks, as well as 100k and 500k tweets. And the variations of 
chunks only applied in the “Score” step in the architecture diagram, and we only timed the “ 
Score and max” steps as our result data.  For each unit experiment, we ran 10 times and 
recorded the average and standard deviation. Then, we could look at how the number of chunks 
would affect the performance of parallelism.  
  
Experiment Results 
Experiment 1: Search Timings 
We performed experiment 1 only for the search component, which we expected to show some 
improvement when being parallelized. However, the results we observed were not in line with 
expectations: parallel scoring was always slower than single threaded scoring (we later 
ascertained that this might be due to parmap making one spark per list element, and in later 
experiments we used parListChunk to alleviate this problem, but this one was not rerun). 
Additionally, it is impossible for the keywords step (taking a string and turning it into a list of 
keywords) to have taken 0 time. Furthermore, the sorting step was supposed to always be 
sequential, so we really expected to see no variation in that timing. Finally, the numbers that 
were produced were often suspiciously similar (ie: scoring in parallel with 2 threads took the 
exact same amount of time as sorting with 4 threads and parallelism turned on). These are 
picoSeconds, according to the haskell getCpuTime documentation, so the results we saw were 
indicative of something being off. We also tried to `seq` instead of `deepseq` and no `seq` at all, 



and in all cases but `deepseq`, sorting took all the time due to the laziness feature causing 
nothing at all to get evaluated until it was time to actually get a result. 
 

 
Experiment 2a: Number of Documents 
We found that increasing the number of documents didn't have any particularly large effects on 
the speed up as more threads were added. We found the best improvement was around 10% 
for 500k documents when going from single to multithreaded execution. We found that in all 
cases when the number of threads exceeded the number of available physical cores (4 cores), 
execution slowed down and was slower than single threaded. We found that at 1.5 million 
records, the process became memory-bound (ram usage on windows task manager was 
observed to be at 99% and swapping constantly), and therefore, adding more threads added to 
overhead and slowed down the process. We found that 2 and 3 threads were generally 
comparable, and 4 threads was slower than 2 or 3 (but this may be due to the contention when 
using 4 cores with other things the OS is doing in the background).  
 

 
 

Category St - 2 thread Par - 2 thread St - 4 thread Par - 4 thread 

Keywords 0 0 0 0 

Scoring 281250000000 312500000000 281250000000 343750000000 

Sorting 968750000000 328125000000 1234375000000 312500000000 



 
 
Experiment 2b: Document  Size 
 
We found that the same performance patterns occurred both in the large document and small 
document experiment - 2 and 3 threads were faster than single threaded for the large 
document, and the performance gains were small.  Large Documents took about twice as long 
as small documents despite having the same amount of total text. This is likely due to usage of 
maps and sets where the total performance is O(nlogn) where n is the size of each document. 
With bigger documents, log n is bigger.  
 

100k: Average Time Standard Deviation 

1 7.820177237 0.5286586286 

2 7.519708554 0.5395692695 

3 7.275554551 0.04967302365 

4 7.885595904 0.7468388326 

5 8.196732601 0.6953339016 

500k:   
1 42.76505513 0.8531633957 

2 39.22405553 0.8187850185 

3 39.78823646 0.5938956038 

4 41.32797538 1.488843918 

5 43.26393572 1.306905599 

1m:   
1 87.73674538 0.890734873 

2 81.66040908 2.508054366 

3 81.96948939 2.096340273 

4 83.95706103 1.807369928 

5 87.60235129 1.696625691 

1.5m:   
1 139.8346421 27.54136564 

2 164.2952562 10.29333662 

3 170.3952842 10.56777717 

4 180.5431903 7.693357383 

5 183.0082534 11.4533551 

Threads 
Large Document Avg 
Time 

Large Document Time 
Stdev 

Small Document Avg 
Time 

Small Document 
TimeStdev 

1 16.52573522 0.729064121 8.054771476 0.09631376774 

2 16.10765388 0.5411509271 7.905438423 0.393094967 

3 16.42805804 0.5279924703 8.136161831 0.5013071916 



 

 
Experiment 3: Number of Chunks 
Experiment result table:  

 
Our experiment 3 shows that the number of chunks do not have much impact on the parallelism 
performance on the 100k tweets. From the result data, 1 thead to 4 threads with 4 chunks, 12 
chunks, and 20 chunks do not have much difference in terms of their performance based on the 
result data. Comparing the performance of different threads, it does match the previous 
experiments that the performances of 2 threads and 3 threads show some improvement than 1 
thread and the performance of 4 threads are similar to 1 thread or slightly worse. In terms of 
500k tweets, it shows that larger chunk splits would slightly improve the performance. For the 
same number of threads, more chunk splits could increase a little performance. Therefore, the 
conclusion for the experiment 3 is that the number of chunks with smaller document sizes do 
not heavily affect the performance; with larger document sizes, larger chunks would slightly 
improve the performance.  

4 16.66502089 0.5292841538 8.133448256 0.4757304653 

5 18.35853235 0.9809306468 8.453650342 0.3673195833 

 100k 500k 

 4 chunks 12 chunks 20 chunks 4 chunks 12 chunks 20 chunks 

1 Thread 6.380 6.414 6.301 36.815 37.477 36.798 

2 Threads 5.825 5.815 5.813 34.812 35.032 33.472 

3 Threads 6.031 5.991 5.948 36.947 33.062 33.743 

4 Threads 6.456 6.454 6.504 38.620 37.900 36.310 



 
Discussion and conclusion 
We were able to successfully implement a document indexing system which used tfidf to score 
document relevance based on keywords. We were able to demonstrate moderate performance 
gains by parallelizing, but we were not able to attribute the time spent during execution to any 
individual components. A future step would be to try to parallelize the search component's 
extraction of the top scoring documents, and to try to make a rest api or something similar that 
interactively serves up searches, so that we could time performance gains from just search 
which can be made to run entirely in parallel. We should also investigate what happens when 
we have many chunks (ie: close to or equal to 1 chunk per document) in terms of performance, 
and also try to get GC metrics. We found that there are limitations to the benefits that can be 
gained by parallelism, namely we found that having more threads than physical cores, or using 
more memory than the system has available will both lead to very poor performance. 


