

COMS 4995 W: Parallel Functional Programming
Optimizing Parallel Sorting
Jay Karp, Benjamin Flin - jlk2225, brf2117

December 23, 2020

1 Abstract
This paper presents an exploration into three main sequential sorting algorithms and their parallel
counterparts. These include merge sort, quicksort, as well as bitonic sort. While bitonic sort is an
inherently parallel algorithm, merge sort and quicksort on their own are not conventionally
parallelized. In this paper we attempt to demonstrate both the potential performance gains of
parallelized sorting in haskell, as well as the cleaner, easier to write and simpler code required to
write these parallelizations in a purely functional programming language. Finally, we present our
own hybrid sorting algorithm which is built upon the best features from the different sorts which
we experimented with.

2 Introduction and Problem Statement
Sorting is one of the most fundamental concepts in computer science. It is one of the first topics
many introductory classes teach to new computer science students, and yet at the same time it is
so foundational that many of the systems we rely on daily are built on the concept of fast,
efficient sorting. This includes things such as web indexing, supercomputing, and database
management.

With the possibile slowing of Moore’s law in the near future, it is also essential that we
look at alternative methods to push these important algorithms even further. Because of this we
decided to implement three main sorting algorithms using Haskell: merge sort, quicksort, and
bitonic sort. Although it would probably be faster to write these sorts in a lower level language
like C, we believe that the functional paradigm allows for much easier and more concise data
parallelism.

After moving these three main sorts from their equivalent sequential and imperative
counterparts, we further pushed the limits of sorting in Haskell to implement some of the
different data parallelism models. Finally, we present ‘hybrid’ sort, which is composed of the
best features from all of the sequential, and parallel sorts that we implemented.

3 Implementation
In this section we will discuss the specific design patterns and implementations which we used in
our sorting implementations. This includes the general Haskell data structures which we used, as

well as a discussion of both the sequential and parallel algorithms which we implemented. Along
with this we will provide analysis of these algorithms imperative counterparts and justifications
for our design decisions.

3.1 Haskell Data Structures
In our initial testing, our implementations were based on haskell's default lists. However, we
quickly realized that all of our implementations would be better suited by a different data
structure. This led us towards multiple alternatives, such as regular Data.Arrays and
Data.Array.REPA. Ultimately we decided on implementing all of our solutions using
Haskell’s Data.Vector, as it provided us with a boxed data structure that has both mutable and
immutable variants as well as O(1) indexing.

The other main data structure that we used during our testing is the instance NFData
Dumb data structure. This data structure simply contained an int, but used a comparison function
with a time cost proportional to its value. This allowed us to test the granularity of our algorithms
to some extent, as we could simulate a large load without many elements in our unsorted
sequence.

3.2 Sequential
After deciding on our use of vectors, our first step was to convert the pseudocode of sequential
imperative code into sequential functional code in haskell. To do this we followed the following
pseudocode for Merge Sort, Quicksort, and Bitonic Sort.

While this step was not extremely challenging, it did come with its own problems. The first
problem that we ran into was efficient memory use. Our initial implementations made use of
Haskell’s Data.Vector.slice, which creates a copy of a subset of an initial vector. We very
quickly realized that this was creating an excessive number of vector copies and using an
extreme amount of memory. This was substantially hindering performance and pushed us to
further look into Data.Vector.Mutable. This exposed multiple extremely useful functions for
in place data modification, specifically,

2

MergeSort(arr, left, right)
 if (left > right) do
 end
 mid = (left+right)/2
 MergeSort(arr, left, mid)
 MergeSort(arr, mid+1, right)
 Merge(arr, left, mid, right)
end

QuickSort(arr, low, high)
 if (low < high) do
 pi = partition(arr, low, high)

 QuickSort(arr, low, pi - 1)
 QuickSort(arr, pi + 1, high)
 end
end

BitonicSort(arr, low, cnt, dir)
 if (cnt > 1) do
 k = cnt / 2
 BitonicSort(a, low, k, 1)
 BitonicSort(a, low+k, k, 0)
 BitonicMerge(a,low, cnt, dir)
 end
end

(1)read :: PrimMonad m => MVector (PrimState m) a -> Int -> m a
(2)write :: PrimMonad m => MVector (PrimState m) a -> Int -> a -> m ()

This provided us with the lower level immutable operations, such as O(1) reading as well as
writing and swapping vector values in place.

One change we made to the sequential versions of the algorithms was a small change to
the default implementation of Merge Sort. While looking at the Haskell Data.List.sort
implementation, which is a Merge Sort, we realized that they check for subsections of the list
that are already sorted in ascending or descending order. If they are in ascending order, then the
algorithm skips the rest of that subsection of the sort. If they are in descending order, then flip all
of the elements in the vector. This saves a surprising amount of time and also makes best case
sorts even faster.

The only other aspect of the sequential sorts which we had to implement was a function
fillBitonic (fillBitonic :: a -> V.Vector a -> V.Vector a). We came to the realization that
because of the parallel nature of the bitonic sorting network we needed to fill our input to our
sequential bitonic sort with enough elements so that the size of the sorted vector is a power of 2.
To do this we filled the sorted array with empty min values (such as 0 or "").

3.3 Parallel
Now that we had the sequential implementations finished, we could focus more specifically on
the parallel implementations and optimizations. Most of our parallelism was done using
Control.Parallel.Strategies, with the exception of bitonicPar, which used Control.Monad.Par.

3.3.1 Merge Sort
For our parallel merge sort implementation, we split our list into each into a sequence of sorted
Vectors sequentially, and then recursively merge all of these Vectors by diving our sequence of
Vectors in half and merging each half in parallel. For the top few levels we ran a special merge
procedure called compare-exchange described below:

1. Create two tasks (sparks), each containing both lists to merge
2. Have one task compute the lower half of the merged lists, and the other compute the

upper half.
3. Concatenate the resulting halves from each task into one list

This procedure was advantageous in the first few levels in our recursive merge, where there are
many elements and less can be done in parallel. When merging was done deeper in the call stack,
since there were less elements to merge per spark, but many more sparks, so this procedure
swapped with our fast sequential one.

3

(3)modify :: PrimMonad m => MVector (PrimState m) a -> (a -> a) -> Int -> m ()
(4)swap :: PrimMonad m => MVector (PrimState m) a -> Int -> Int -> m ()

3.3.2 Quick Sort
Running quicksort in parallel involved use of the following procedure:

1. Split the sequence evenly among n tasks.
2. Choose a pivot and give it to each task.
3. Have each task partition its sequence into a pair of lists, one with elements less than the

pivot, and the other with elements greater than the pivot.
4. Split the tasks into two halves. Have the first half of the tasks give their upper list to the

second half and vice versa.
5. Concatenate the lists so we end up with n lists, with lists less than the pivot and 2

n
2
n

greater than the pivot.
6. Recurse on each half in parallel and then concatenate the lists.
7. After recursions, our base case is to use sequential sort.og(n)l

Running this procedure in parallel gave good results, however, some time was lost in steps 3 and
4, as well as some time lost in concatenation.

3.3.3 Bitonic Sort
Bitonic sort was the only sort where we used Control.Monad.Par.IO instead, since we
needed to do in-place swaps in memory, otherwise much time would be lost in copying and
memory management associated with Vectors. The only way to do these in-place swaps in
parallel is to run it in the IO monad, rather than the ST s () monad since ST has knowledge of
its sequential context in s. Parallelizing bitonic sort was a challenge, as our naive attempt to do
each swap in parallel (as one would normally do in a sorting network) resulted in fine-grain
parallelism, with enormous amounts of tasks taking very little time. Instead of parallelizing each
swap, we instead batched computations by parallelizing recursive calls, with depth limiting.

3.3.4 Hybrid Sort
Hybrid sort was simply a combination of sequential quicksort and the merge operation with the
compare-exchange procedure. We divided the list evenly among n tasks and then ran a sequential
quicksort in each task in parallel. These lists were then concatenated using the parallel merge
procedure used in the parallel merge sort algorithm. This scheme gave very good results as it had
low granularity and very little communication between tasks.

4 Evaluation

4.1 Settings
We ran our experiments on an Intel Core i7 3700k 3.50 GHz processor.

4

4.2 Benchmarks
We performed many different benchmarks to test our different sorting implementations,
however, we settled on two to discuss in this paper. First, we ran 128 trials of sorting a random
permutation of the dictionary. Second, we ran 32 trials of sorting a uniformly distributed list of
integers. To compare the speed of all of the algorithms we used 220 integers, however, to
compare the speed up when increasing the number of cores on our parallel implementations, we
ran this sort on 218 integers.

4.3 Results

Our experiments show that in almost every case our parallel algorithms ran faster than our
sequential implementations. The only exception is that parallel Bitonic sort was slower then its
sequential counterpart when sorting integers. One other important thing to note is that our hybrid
sort implementation was the fastest sorting algorithm in all of the different tests which we ran.
Along with this, our implementation was 4x faster than Haskell’s sequential implementation of
Data.List.sort as well as ~25% faster than GNU sort on a random dictionary. GNU sort is
completely written C and coming anywhere near this low level api was an unexpected result.1

4.4 Performance Analysis

4.4.1 Parallel Merge Sort

1 We did not have access to any sort of GNU sort api, which means that these metrics are slightly unfair.
GNU sort reads files in parallel and because of the lack of an api, it is difficult to time only the sort. We assume that
are sort is pretty similar in time to GNU sort’s implementation.

5

Figure 1 Figure 2

This figure shows around a 2x speedup with 8 cores. Threadscope reveals the compare and
exchange procedure happening on two cores at the end.

4.4.2 Parallel Quicksort

The figure shows around a 2x speedup with 8 cores. Threadscope reveals that the concatenation
of the lists at the end limited our speedups.

4.4.3 Parallel Bitonic Sort

6

Figure 3 Figure 4: Eventlog for Parallel Merge Sort

Figure 5 Figure 6: Eventlog for Parallel Quicksort

Bitonic sort is very evenly distributed across 8 cores, however, it still remains slower than the
rest. This resulted in around a 4x speedup.

4.4.4 Hybrid Sort

The figure shows around a 3-4x speedup. Threadscope shows each quicksort being divided
evenly among the 8 cores and then the compare and exchange sequence happening at the end.

5 Conclusions and Future Work
GNU sort is 4544 lines of C code. Our hybrid haskell sort implementation was ~30 lines. While
we cannot give exact speeds of the two implementations, the fact these two parallel sorts were in
close in speed is impressive. The ability to provide both high level API’s for data parallelism and
low level API’s for data manipulation speaks to the robustness of parallel functional
programming in Haskell. While there were challenges such as handling inter-task
communication and memory mutability, our code ended up being relatively efficient, fast and
clean.

7

Figure 7 Figure 8: Eventlog for Parallel Bitonic Sort

Figure 9 Figure 10: Eventlog for Hybrid Sort

One of the largest failures which we ran into during our project was the parallelization of
Bitonic sort. Bitonic sort is optimized for parallel execution, because each compare and swap
operation can be done at the same time. This would be extremely efficient if you had cores2

n
where but because we only had 8 cores, our program seemed to spend more size of listn =
time parallelizing and scheduling computations than it did evaluating them. In our future work,
Bitonic sort could be greatly improved by running the algorithm using Haskell GPU support for
CUDA. While this would introduce different issues such as memory synchronization, it would
overcome many of the problems that Bitonic sort faces when running on the CPU.

6 Usage
The program can be simply built using stack build from within the root directory. It can then
be run with stack exec -- par-sort-exe [OPTIONS]. Running without options, or with either
the -h or -help flag yields the following help text
Usage: parsort

-s [default | bitonicSeq | mergeSeq | quickSeq | bitonicPar |

mergePar | quickPar | hybrid]

-i [file]

-z [size]
Available Options:

-s, -sort Specifies which sort to perform

-i, -input [...file] Provides a pointer to a file with new-line separated

values to sort

-z, -size Specifies a uniformly distributed random array of 2^[size]

elements

-h, -help Shows the usage information

7 References
[1] 11.4 Mergesort
[2] Lecture 12: Parallel quicksort algorithms
[3] Bitonic Sort: Overview

A Code List

Main.hs

8

1 module Main where
2

3 import Control.DeepSeq (NFData)
4 import Data.List (sort)
5 import Data.String (fromString)
6 import qualified Data.Vector as V

https://www.mcs.anl.gov/~itf/dbpp/text/node127.html
https://www.uio.no/studier/emner/matnat/ifi/INF3380/v10/undervisningsmateriale/inf3380-week12.pdf
https://www.cs.rutgers.edu/~venugopa/parallel_summer2012/bitonic_overview.html

9

7 import Lib (bitonicPar, bitonicSeq, hybridPar,
8 mergePar, mergeSeq, quickPar, quickSeq,
9 readLines, shuffle, time, timeIO)
10 import System.Console.GetOpt

11 import System.Environment (getArgs)
12 import System.Exit (die)
13

14 data Arg
15 = Sort String -- -s

16 | Input String -- -i
17 | Size String -- -z

18 | Help -- --help

19 deriving (Eq, Ord, Show)
20

21 options :: [OptDescr Arg]
22 options = [
23 Option ['s'] ["sort"] (ReqArg Sort "") "default | bitonicSeq | mergeSeq |
quickSeq | bitonicPar | mergePar | quickPar | hybrid"

24 , Option ['i'] ["input"] (ReqArg Input "") "File path"
25 , Option ['z'] ["size"] (ReqArg Size "") "2^z size of array to be sorted"
26 , Option ['h'] ["help"] (NoArg Help) "Print this help message"
27]

28

29

30 runFromArgs :: [String] -> IO ()
31 runFromArgs args = case opt of
32 Help:_ -> die usage
33 (Sort s):(Input f):_ -> do
34 v <- readLines f

35 if s == "bitonicSeq" || s == "bitonicPar" then
36 runBitonic s (fromString "") v
37 else
38 runSort s v

39 (Sort s):(Size z):_ -> do
40 let n = read z :: Int
41 v <- shuffle $ V.enumFromN (1 :: Int) (2^n)
42 if s == "bitonicSeq" || s == "bitonicPar" then
43 runBitonic s 0 v
44 else

45 runSort s v

46 _ -> die usage

47 where

48 (opt,_,_) = getOpt Permute options args
49

50 usage :: String
51 usage = "Usage: parsort -s [default | bitonicSeq | mergeSeq | quickSeq |
bitonicPar | mergePar | quickPar | hybrid] -i [file] -z [size]"

Lib.hs

Utils.hs

10

52

53 runSort :: (NFData a, Ord a) => String -> V.Vector a -> IO ()
54 runSort "default" v = time "Default Sort" (sort $ V.toList v)
55 runSort "quickSeq" v = time "Sequential Quicksort" (quickSeq v)
56 runSort "mergeSeq" v = time "Sequential Merge Sort" (mergeSeq v)
57 runSort "hybrid" v = time "Parallel Hybrid Sort" (hybridPar v)
58 runSort "quickPar" v = time "Parallel Quick Sort" (quickPar v)
59 runSort "mergePar" v = time "Parallel Merge Sort" (mergePar v)
60 runSort _ _ = die usage

61
62 runBitonic :: (NFData a, Ord a) => String -> a -> V.Vector a -> IO ()
63 runBitonic "bitonicSeq" a v = time "Sequential Bitonic Sort" (bitonicSeq a v)
64 runBitonic "bitonicPar" a v = timeIO "Parallel Bitonic Sort" (bitonicPar a v)
65 runBitonic _ _ _ = die usage

66

67 main :: IO ()
68 main = getArgs >>= runFromArgs

1 module Lib (
2 module Sequential,
3 module Parallel,
4 module Utils,
5) where
6

7 import Parallel

8 import Sequential

9 import Utils

1 {-# LANGUAGE DeriveGeneric #-}
2 module Utils
3 (
4 fillBitonic,
5 readLines,
6 shuffle,
7 Dumb,
8 time,
9 timeIO

10)

11 where

12

13 import Control.DeepSeq (NFData, force)

11

14 import Control.Monad (forM_)
15 import qualified Data.ByteString as B
16 import Data.Time.Clock (diffUTCTime, getCurrentTime)
17 import Data.Vector ((!))

18 import qualified Data.Vector as V
19 import qualified Data.Vector.Mutable as M
20 import GHC.Generics (Generic)
21 import System.IO (IOMode (ReadMode), hIsEOF, withFile)
22 import System.Random (randomRIO)
23
24 shuffle :: V.Vector a -> IO (V.Vector a)
25 shuffle v = do
26 let n = V.length v - 1
27 js <- V.forM (V.enumFromTo 0 n) $ \i -> randomRIO (i, n)
28 return $ V.create $ do
29 o <- V.thaw v
30 forM_ [1..n] $ \i -> M.swap o i (js!i)
31 return o

32

33

34 fillBitonic :: a -> V.Vector a -> V.Vector a
35 fillBitonic a v = V.create $ do
36 o <- V.thaw v
37 let l = V.length v
38 let n = 2 ^ (ceiling (logBase 2 (fromIntegral l) :: Double) :: Int) - l
39 o' <- M.grow o n
40 p <- M.replicate n a
41 M.copy (M.slice l n o') p
42 return o'

43

44 readLines :: String -> IO (V.Vector B.ByteString)
45 readLines filename = withFile filename ReadMode ((V.fromList <$>) . getLines)
46 where

47 getLines handle = do
48 eof <- hIsEOF handle

49 if eof then
50 return []

51 else

52 (:) <$> B.hGetLine handle <*> getLines handle
53

54 newtype Dumb = Dumb Integer deriving (Generic, Show)
55

56 instance Eq Dumb where
57 (Dumb 0) == (Dumb 0) = True
58 (Dumb _) == (Dumb 0) = False
59 (Dumb 0) == (Dumb _) = False
60 (Dumb x) == (Dumb y) = Dumb (x-1) == Dumb (y-1)

Sequential.hs

12

61

62 instance Ord Dumb where
63 (Dumb x) <= (Dumb 0) = x <= 0
64 (Dumb 0) <= (Dumb y) = y >= 0
65 (Dumb x) <= (Dumb y) = Dumb (x-1) <= Dumb (y-1)
66

67 instance Num Dumb where
68 (+) (Dumb a) (Dumb b) = Dumb $ a + b
69 (*) (Dumb a) (Dumb b) = Dumb $ a * b
70 abs (Dumb a) = Dumb $ abs a
71 fromInteger = Dumb
72 negate (Dumb a) = Dumb $ -a
73 signum (Dumb a) = Dumb $ signum a
74

75 instance NFData Dumb
76

77 time :: (NFData a) => String -> a -> IO ()
78 time msg a = do
79 start <- getCurrentTime

80 let a' = force a
81 end <- a' `seq` getCurrentTime

82 putStrLn $ msg ++ ": " ++ show (diffUTCTime end start)
83

84 timeIO :: NFData a => [Char] -> IO a -> IO ()
85 timeIO msg io = do
86 start <- getCurrentTime

87 a <- io

88 end <- force a `seq` getCurrentTime

89 putStrLn $ msg ++ ": " ++ show (diffUTCTime end start)

1 module Sequential (bitonicSeq, mergeSeq, quickSeq) where
2

3 import Control.Monad (when)
4 import Data.Vector ((!))
5 import qualified Data.Vector as V
6 import qualified Data.Vector.Mutable as M
7 import Utils (fillBitonic)
8

9 bitonicSeq :: Ord a => a -> V.Vector a -> V.Vector a
10 bitonicSeq = (bitonic .) . fillBitonic
11

12 bitonic :: Ord a => V.Vector a -> V.Vector a
13 bitonic v = V.create $ do

13

14 o <- V.thaw v
15 bitonicSort' o 0 (V.length v) True
16 return o
17 where
18 bitonicSort' o low cnt dir =
19 when (cnt > 1) $ do
20 let k = cnt `div` 2
21 bitonicSort' o low k True
22 bitonicSort' o (low + k) k False
23 bitonicMerge o low cnt dir
24 bitonicMerge o low cnt dir =
25 when (cnt > 1) $ do
26 let k = cnt `div` 2
27 loopSwap o low low k dir
28 bitonicMerge o low k dir
29 bitonicMerge o (low+k) k dir
30 loopSwap o low i k dir =
31 when (i < low + k) $ do
32 compareAndSwap o i (i+k) dir
33 loopSwap o low (i+1) k dir
34 compareAndSwap o i j dir = do
35 oi <- M.read o i
36 oj <- M.read o j
37 when (dir == (oi > oj)) $ M.swap o i j
38

39 mergeSeq :: Ord a => V.Vector a -> V.Vector a
40 mergeSeq = merge . runs
41

42 runs :: Ord a => V.Vector a -> V.Vector (V.Vector a)
43 runs x = V.create $ do
44 o <- M.new (V.length x)
45 runs' 1 x 0 o
46 where
47 runs' i v k o
48 | i < V.length v =
49 if v!(i-1) <= v!i then
50 asc (i-1) i k o
51 else
52 dsc (i-1) i k o
53 | otherwise = return $ M.slice 0 k o
54 asc s i k o =
55 if i < V.length x && x!(i-1) <= x!i then
56 asc s (i+1) k o
57 else do
58 M.write o k (V.slice s (i-s) x)
59 runs' (i+1) x (k+1) o
60 dsc s i k o =

14

61 if i < V.length x && x!(i-1) > x!i then
62 dsc s (i+1) k o
63 else do
64 M.write o k (V.reverse $ V.slice s (i-s) x)
65 runs' (i+1) x (k+1) o
66

67 merge :: Ord a => V.Vector (V.Vector a) -> V.Vector a
68 merge v = (!0) $ V.create $ do
69 o <- V.thaw v
70 mergeAll (V.length v) o
71 return $ M.slice 0 1 o
72 where
73 mergeAll k o
74 | k == 1 = return ()
75 | otherwise = do
76 k' <- mergePairs 0 k o
77 mergeAll k' o
78 mergePairs i k o
79 | i < k - 1 = do
80 oi <- M.read o i
81 oip1 <- M.read o (i+1)
82 M.write o (i `div` 2) (merge2 oi oip1)
83 mergePairs (i+2) k o
84 | i == k - 1 = do
85 oi <- M.read o i
86 M.write o (i `div` 2) oi
87 return $ k `div` 2 + 1
88 | otherwise = return $ k `div` 2
89

90 merge2 :: Ord a => V.Vector a -> V.Vector a -> V.Vector a
91 merge2 a b = V.create $ do
92 v <- M.new (V.length a + V.length b)
93 a' <- V.thaw a
94 b' <- V.thaw b
95 go a' b' 0 0 v
96 return v
97 where go a' b' i j v
98 | i < V.length a && j < V.length b = do
99 ai <- M.unsafeRead a' i
100 bj <- M.unsafeRead b' j
101 if ai <= bj then do
102 M.unsafeWrite v (i+j) ai
103 go a' b' (i+1) j v
104 else do
105 M.unsafeWrite v (i+j) bj
106 go a' b' i (j+1) v
107 | i < V.length a = do

Parallel.hs

15

108 ai <- M.unsafeRead a' i
109 M.unsafeWrite v (i+j) ai
110 go a' b' (i+1) j v
111 | j < V.length b = do
112 bj <- M.unsafeRead b' j
113 M.unsafeWrite v (i+j) bj
114 go a' b' i (j+1) v
115 | otherwise = return ()
116

117
118 quickSeq :: Ord a => V.Vector a -> V.Vector a
119 quickSeq x = V.create $ do
120 x' <- V.thaw x
121 quickSort' x' 0 (V.length x - 1)
122 return x'
123 where
124 quickSort' v low high
125 | low < high = do
126 i <- partition v low high
127 quickSort' v low (i - 1)
128 quickSort' v (i + 1) high
129 | otherwise = return ()
130 partition v low high = do
131 i <- go (low - 1) low
132 M.swap v (i+1) high
133 return $ i + 1
134 where
135 go i j
136 | j < high = do
137 vj <- M.read v j
138 pivot <- M.read v high
139 if vj < pivot then do
140 M.swap v (i+1) j
141 go (i+1) (j+1)
142 else
143 go i (j+1)
144 | otherwise = return i

1 module Parallel (bitonicPar, mergePar, hybridPar, quickPar) where
2 import Control.DeepSeq (force)
3 import Control.Monad (when)
4 import Control.Monad.IO.Class

5 import Control.Monad.Par.Class

6 import Control.Monad.Par.IO

16

7 import Control.Parallel.Strategies

8 import Data.List.Split (chunksOf)
9 import Data.Vector ((!))

10 import qualified Data.Vector as V
11 import qualified Data.Vector.Mutable as M
12 import qualified Data.Vector.Split as S
13 import Sequential (quickSeq)
14 import Utils (fillBitonic)
15

16 bitonicPar :: (NFData a, Ord a) => a -> V.Vector a -> IO (V.Vector a)
17 bitonicPar = (bitonic .) . fillBitonic
18

19 bitonic :: Ord a => V.Vector a -> IO (V.Vector a)
20 bitonic v = do
21 o <- V.thaw v
22 runParIO $ bitonicSort' o 0 (V.length v) True (0 :: Integer)
23 V.freeze o
24 where

25 bitonicSort' o low cnt dir l =

26 when (cnt > 1) $ do
27 let k = cnt `div` 2
28 if l < 7 then do
29 a <- spawn $ bitonicSort' o low k True (l+1)
30 b <- spawn $ bitonicSort' o (low + k) k False (l+1)
31 get a

32 get b

33 else do
34 bitonicSort' o low k True (l+1)
35 bitonicSort' o (low + k) k False (l+1)
36 bitonicMerge o low cnt dir l

37 bitonicMerge o low cnt dir l =

38 when (cnt > 1) $ do
39 let k = cnt `div` 2
40 loopSwap o low low k dir

41 if l < 7 then do
42 a <- spawn $ bitonicMerge o low k dir (l+1)
43 b <- spawn $ bitonicMerge o (low+k) k dir (l+1)
44 get a

45 get b

46 else do
47 bitonicMerge o low k dir (l+1)
48 bitonicMerge o (low+k) k dir (l+1)
49 loopSwap o low i k dir =

50 when (i < low + k) $ do
51 loopSwap o low (i+1) k dir
52 liftIO $ compareAndSwap o i (i+k) dir

53 compareAndSwap o i j dir = do

17

54 oi <- M.read o i
55 oj <- M.read o j
56 when (dir == (oi > oj)) $ M.swap o i j
57

58 hybridPar :: (NFData a, Ord a) => V.Vector a -> V.Vector a
59 hybridPar v = merge $ V.fromList $ parMap rdeepseq quickSeq chunks
60 where

61 n = V.length v
62 chunks = S.chunksOf (n `div` 32) v
63
64 quickPar :: (NFData a, Ord a) => V.Vector a -> V.Vector a
65 quickPar x = runEval $ quickPar' chunks
66 where

67 quickPar' :: (NFData a, Ord a) => [V.Vector a] -> Eval (V.Vector a)
68 quickPar' [] = return V.empty
69 quickPar' [v] = rpar (quickSeq v)

70 quickPar' (v:vs) = do
71 let p = V.head v
72 vs' <- parList rdeepseq (V.partition (<p) <$> (V.tail v:vs))
73 lower <- parList rdeepseq (fst <$> vs')

74 upper <- parList rdeepseq (snd <$> vs')

75 lower' <- parList rdeepseq (filter (not . null) $ V.concat <$>
chunksOf 2 lower)
76 upper' <- parList rdeepseq (filter (not . null) $ V.concat <$>
chunksOf 2 upper)
77 lower'' <- quickPar' lower'

78 upper'' <- quickPar' upper'

79 rpar ((lower'' ̀V.snoc` p) V.++ upper'')
80 n = V.length x
81 chunks = S.chunksOf (n `div` 32) x
82

83 mergePar :: (NFData a, Ord a) => V.Vector a -> V.Vector a
84 mergePar = merge . runs
85

86 runs :: Ord a => V.Vector a -> V.Vector (V.Vector a)
87 runs x = V.create $ do
88 o <- M.new (V.length x)
89 runs' 1 x 0 o
90 where

91 runs' i v k o

92 | i < V.length v =
93 if v!(i-1) <= v!i then
94 asc (i-1) i k o
95 else

96 dsc (i-1) i k o
97 | otherwise = return $ M.slice 0 k o
98 asc s i k o =

18

99 if i < V.length x && x!(i-1) <= x!i then
100 asc s (i+1) k o
101 else do
102 M.write o k (V.slice s (i-s) x)
103 runs' (i+1) x (k+1) o
104 dsc s i k o =

105 if i < V.length x && x!(i-1) > x!i then
106 dsc s (i+1) k o
107 else do
108 M.write o k (V.reverse $ V.slice s (i-s) x)
109 runs' (i+1) x (k+1) o
110

111

112 merge :: (NFData a, Ord a) => V.Vector (V.Vector a) -> V.Vector a
113 merge x = runEval (merge' (0::Integer) x)
114 where

115 merge' l v

116 | n > 1 = do
117 a' <- merge' (l+1) a >>= if l < 15 then rpar else rseq
118 b' <- merge' (l+1) b >>= if l < 15 then rpar else rseq
119 if l < 1 then merge2Par a' b' else return $ merge2 a' b'
120 | otherwise = return $ v!0
121 where

122 n = V.length v
123 a = V.slice 0 (n `div` 2) v
124 b = V.slice (n `div` 2) (n - n `div` 2) v
125

126 merge2 :: Ord a => V.Vector a -> V.Vector a -> V.Vector a
127 merge2 a b = V.create $ do
128 v <- M.new (V.length a + V.length b)
129 a' <- V.thaw a
130 b' <- V.thaw b
131 go a' b' 0 0 v
132 return v

133 where go a' b' i j v
134 | i < V.length a && j < V.length b = do
135 ai <- M.unsafeRead a' i
136 bj <- M.unsafeRead b' j
137 if ai <= bj then do
138 M.unsafeWrite v (i+j) ai
139 go a' b' (i+1) j v
140 else do
141 M.unsafeWrite v (i+j) bj
142 go a' b' i (j+1) v
143 | i < V.length a = do
144 ai <- M.unsafeRead a' i
145 M.unsafeWrite v (i+j) ai

19

146 go a' b' (i+1) j v
147 | j < V.length b = do
148 bj <- M.unsafeRead b' j
149 M.unsafeWrite v (i+j) bj
150 go a' b' i (j+1) v
151 | otherwise = return ()

152

153 merge2Par :: (NFData a, Ord a) => V.Vector a -> V.Vector a -> Eval (V.Vector a)
154 merge2Par a b = do
155 l <- rpar (force lower)
156 u <- rpar (force upper)

157 return (l V.++ u)
158 where

159 n = V.length a + V.length b
160 h = n `div` 2
161 third (_,_,x) = x

162 lower = third <$> V.postscanl' accumLower (0,0,undefined) (V.enumFromN
(0::Integer) h)
163 accumLower (i, j, _) _

164 | i < V.length a && j < V.length b =
165 if a!i <= b!j then
166 (i+1, j, a!i)
167 else

168 (i, j+1, b!j)
169 | i < V.length a = (i+1, j, a!i)
170 | otherwise = (i, j+1, b!j)
171 upper = V.reverse $ third <$> V.postscanl' accumUpper (V.length a -
1,V.length b - 1,undefined) (V.enumFromN (0::Integer) (n-h))
172 accumUpper (i, j, _) _

173 | i > 0 && j > 0 =
174 if a!i >= b!j then
175 (i-1, j, a!i)
176 else

177 (i, j-1, b!j)
178 | i > 0 = (i-1, j, a!i)
179 | otherwise = (i, j-1, b!j)

