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1 Introduction

This project is a parallel SAT Solver that will solve boolean satisfiability prob-
lems. The SAT Solver implements a backtracking algorithm that will keep as-
signing variables in the expression a boolean value until the problem is deemed
satisfiable or unsatisfiable. Additionally, the SAT Solver implements the DPLL
algorithm, which improves the performance of the backtracking algorithm by
adding a set of heuristics, which are Literal Elimination and Unit Propagation.

As the SAT Solver assigns variables a boolean value in the expression until
the problem’s satisfiability is determined, the SAT Solver implements parallelism
by computing the value of the boolean expression when a variable is assigned a
True and False Boolean value in parallel. With four cores, we see an increase in
performance of 2.33 over the sequential implementation. The Sat Solver sees the
highest performance increase per thread with two cores. Performance after two
cores becomes less significant.

The SAT Solver was tested against the SATLIB Benchmarks Problems from
the University of British Columbia. We used at most four cores to evaluate our
algorithm.

2 SAT Solvers

The purpose of an SAT Solver is to determine whether a boolean expression is
satisfiable or unsatisfiable. In other words, it is satisfiable if there is an assign-
ment of True and False values to variables in the boolean expression that will
lead to the expression evaluating to True. If there is no assignment that can
lead the boolean expression to evaluate to True, then the boolean expression is
unsatisfiable. SAT is an NP-complete problem and was the first problem to be
proven to be NP-complete.

SAT Solvers have a variety of uses. They can be used for hardware/software
verification, cryptography, artificial intelligence, and more. Sat Solvers have
solved scheduling problems, tested pattern generation, and aided in cryptanaly-
sis.



2 W.Choi and A.de Soler

3 Implementation

3.1 I/O Parsing

The SATLIB library comes in DIMACS format.

c Example CNF format file

c

p cnf 4 3

1 3 -4 0

4 0 2

-3

In order to convert the DIMACS file to our algorithm input format, we used
the parse-dimacs library [2]. The library returns UArrays, which we wrote a
wrapper to transform into our algebraic data type.

3.2 Sequential Algorithm

Given a CNF boolean expression in DIMACS format, the SAT Solver will print
out whether the problem is satisfiable or unsatisfiable. The SAT Solver is based
off of Andrew Gibiansky’s blog article [1]. It implements a backtracking search
algorithm to determine the satisfiability of a given boolean expression. After the
SAT Solver receives the boolean expression in an input format the SAT Solver
is able to process, the SAT Solver will find the first variable in the boolean
expression that has not been assigned a boolean value (a free variable). Next,
the SAT Solver will guess that this free variable is True. After this guess is made,
every occurrence of this free variable is given the value True. Subsequently, the
SAT Solver will attempt to simplify the expression and see if the expression can
evaluate to True or False. If the expression cannot be simplified, the backtracking
algorithm will recurse and proceed to find another free variable to assign it a
boolean value of True. On the other hand, if the boolean expression can be
simplified to True, then the SAT Solver will state on the command line that
the boolean expression is “SATISFIABLE”. On the other hand, if the boolean
expression simplifies to False, the SAT Solver will take the most recent variable
that was assigned True and assign the value False. If the problem simplifies
to False after assigning a variable the boolean value False, then the boolean
expression is “UNSATISFIABLE”. Note Figure for an illustrated example.

In order to improve the performance of the recursive backtracking algorithm,
the SAT solver implements the DPLL algorithm (Davis-Putnam-Logemann-
Loveland). In a nutshell, the DPLL algorithm adds heuristics that improve the
performance of the backtracking algorithm. It is an algorithm that requires the
boolean expression to be in CNF form. The heuristics added are Literal Elimi-
nation and Unit Propagation.

Literal Elimination determines the polarity of the variables in a boolean
expression. Suppose that a variable in “A” appears in only the negative polarity.
In other words, in the boolean expression A is only seen as !A. The Literal

https://www.cs.ubc.ca/~hoos/SATLIB/Benchmarks/SAT/satformat.ps
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Fig. 1: Illustrated example of backtracking algorithm without heuristics to im-
prove performance

Elimination heuristic would deduce that the value of A is False. On the other
hand, if “A” appears only in positive polarity (just as “A”), literal elimination
would indicate that the value is True.

In the implementation of Literal Elimination, the program places all variables
in the boolean expression into a list where each unique variable will appear once
in this list of variables (hereinafter a ”literal list”). Afterwards, a function to de-
termine whether a variable has a positive, negative, or mixed polarity is mapped
over this literal list (hereinafter a ”polarity list”). The polarity list and literal
list are zipWithed with a function that will produce a list of tuples that will in-
dicate the boolean value that each variable in the literal list should be assigned.
Variables that are in a Positive Polarity would be assigned True, Negative Po-
larity would be assigned False, and mixed would not be assigned a boolean value
(an assignment list). The program would use this list of assignments to assign
each occurrence of the variable in the boolean expression with the corresponding
boolean value determined in the list of assignments.

Furthermore, Unit Propagation increases the backtracking performance by
searching the entire Expression for clauses that contain only one variable. When
such a clause is found, it will assign either a True or False value to every occur-
rence of the variable in the boolean expression.

The implementation of the Unit Propagation algorithm is constructed as fol-
lows. The first step is to break the boolean expression into a list of clauses.
Since every clause is AND’ed together, it is a matter of traversing the AND’s
and creating a list of them (clause list). Subsequently, the program takes out all
the clauses of the clause list that contain only one variable (a unit clause) and
indicate in a tuple whether the variable is assigned a boolean value of True or
False. If the unitClause contains a variable that is NOT’ed, then the variable
should be the value False. Otherwise, the variable should be assigned the value
True. This will generate a list of tuples that contains the variable that needs to
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be assigned a boolean value and the value the variable should have (an assign-
ment list). Finally the program will take this assignment list and replace every
occurrence of the variable from the list that appears in the boolean expression
with the corresponding boolean value in the assignment list.

Prior to the SAT Solver finding a free variable in the boolean expression to
assign a Boolean value to, the variables in the expression will first be assigned
boolean values with Unit Propagation. Afterwards, the variables in the expres-
sion will be assigned Boolean values through Literal Elimination. Thus prior to
the SAT Solver finding a free variable in order to guess if the variable should be
True or False, DPLL algorithm assigns boolean values to as many variables that
fit the conditions of the heuristic.

3.3 Parallel Algorithm

We tried various methods to parallelize our sequential algorithm, including the
simplification of expressions, guessing multiple free variables simultaneously, and
parallelizing the false and true guesses for each variable.

Ultimately, we found that only parallelizing the boolean guesses led to ap-
preciable performance increase. Parallelizing the expression simplification led
to far too great of spark creation with the vast majority being garbage col-
lected. Guessing multiple free variables ended up repeating a lot of work that we
already computed in another guess. If we had implemented a stateful conflict-
driven clause learning (CDCL) algorithm, we could have taken advantage of this
parallelization, but without it, we found the algorithm to instead more overhead
than its sequential counterpart.

Eventually, we focused on fine-tuning our parallelization of true/false guess
of each variable. An illustrated example in Figure 2 explains the process. For
each time we make a guess on a free variable, we divide the guess into two
branches, a true branch and a false branch. Each branch needs to do additional
work by guessing extra variables, and for each recursive call of the procedure,
we parallelize the work to a thread.

We found out that we needed to tune parameters to optimize performance
of our algorithm. First, we found that parallelizing only to Weak Head Normal
Form using rpar improved performance more than evaluating completely with
rparWith rdeepseq. We also found that we needed to limit the recursion depth
to designate threads to guesses, or we would create too many sparks that would
dud or get garbage collected. The optimal depth differed on each machine, but on
the VM we tested on, we found a depth of 40 to show best empirical performance.

While we have only included the guess parallelization code in this report, the
other parallelization attempts are available as separate branches on the github
repository of the project at
https://github.com/wonhyukchoi/parallel-sat-solver.

https://github.com/wonhyukchoi/parallel-sat-solver
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Fig. 2: Illustrated example of the variable false/true guess parallelization.

4 Evaluation

4.1 Sequential v.s. Parallel

Our evaluation used the SATLIB benchmark as produced by the University of
British Columbia. In particular, we mainly used the pigeonhole problem set,
as they had a reasonable amount of variables (42∼110) and clauses (133∼561),
giving us a practical dataset to measure our performance.

For evaluations, we used the n1-standard-4 virtual machine on Google
Cloud Platform. The VM had an Intel Xeon CPU@2.30Ghz with 4 cores, 15Gb
of RAM, and ran Ubuntu 18.04 LTS. We measured our runtime on N = 1 . . . 4
threads, and ran 10 iterations to obtain an accurate result. Instead of calculating
the mean of the 10 iterations, we took the lowest runtime of each thread test
runtime, as the lowest value often gives the lower bound for the algorithm. The
higher values are not caused by the variability by the algorithm, rather by other
processes and scheduling on the machine.

Regardless of the problem set, we obtained very similar results. In general,
we saw a marketed increase in performance when we increased the number of
threads from N = 1 to N = 2, but our performance did not increase significantly
afterwards, as seen on Figure 3.

In our best-case analysis, we improve sequential performance by 2.33 times
on four threads over our sequential version.

A threadscope analysis of the algorithm shows that the four cores evenly
divide the workload. Initially, the sequential part of the algorithm moves the
file from I/O and parses it, and distributes it to each thread, but parallelization
performs rather evenly afterwards. Figure 4 visualizes the results.
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Fig. 3: Runtime evaluation for two different problems.
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Fig. 4: Threadscope analysis of the parallel algorithm on four threads.

4.2 Comparison to SotA solvers

Unfortunately, it is difficult to measure runtime performance against State-of-
the-Art(SotA) SAT solvers for three main reasons.

First, the SATLIB library, while well organized, has ceased maintenance since
2011, and modern SAT solver competitions measure SAT solver performance by
requiring participants to submit their own benchmarks [3]. As we have used the
well-organized SATLIB library, we cannot compare our runtimes.

Second, benchmark performance of SotA solvers only show performance for
benchmarks of size incomparable to our example. While our runtime jumped
from sub-second performance on a problem with 42 variables and 133 clauses
to nearly ten minutes on a problem with 110 variables and 561 variables, SotA
solvers are measured against giant problems with over 106 variables and 107

clauses [3].
Third, the way SotA solvers are measured are different from our time mea-

surement evaluation. SAT solvers are typically measured by the number of test
cases they can solve, and ranked descending by the number of cases terminated.
Therefore, results of SotA solvers are in a format incompatible with our results.

Nonetheless, given the large size of problems SotA solvers solve under an
hour, we can assume that the disparity between our program and SotA algo-
rithms is exponential.

5 Lessons Learned

Ultimately, we found that expressing our boolean expression (no pun intended)
inductively led to difficult parallelization. A boolean expression in CNF is a
large AND clause of multiple clauses. A list implementation of the clauses may
make it easier to parallelize, as we could spark each element of the list instead of
traversing a recursive data structure. The inductive type also makes it difficult
to debug, as threads are solving different levels of the problem concurrently.
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Our inductive structure, and parallel backtracking algorithm also ended up
being poorly parallelized because the program threw away a lot of work. The
core of our implementation depended on AND and OR statements. In an AND
statement, if we get that one operand is False, then we do not need the other
operand. However, in our parallelization, we often spark work for the unused
operand, and therefore waste computation time.

On a similar vein, limits of short-circuiting operators also limited our paral-
lelization. In a code snippet AND True False, the program evaluates True before
False. However, evaluation of True may not be needed if the execution of False
finished first, however there does not seem to reliably force the evaluation of an
AND statement to short circuit depending on the thunk that finishes first.

6 Code Listing

6.1 app/Main.hs

module Main where

import ParSolver

import ParseIO

import System.Exit(die)

import System.Environment(getArgs, getProgName)

main :: IO ()

main = do

args <- getArgs

case args of

[file] -> do

cnf <- loadFile file

case cnf of

Left err -> putStrLn err

Right cnf' -> case satisfiableDPLL cnf' of

True -> putStrLn $ file ++

" is SATISFIABLE"

_ -> putStrLn $ file ++

" is UNSATISFIABLE"

_ -> do

pn <- getProgName

die $ "Usage: " ++ pn ++ " <filename>"

6.2 src/ParseIO.hs

module ParseIO where

import Lib(Expr(..))
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import Data.Array.Unboxed

import Language.CNF.Parse.ParseDIMACS

loadFile :: FilePath -> IO (Either String Expr)

loadFile fileName = do

dimacsCNF <- parseFile fileName

case dimacsCNF of

Left _ -> return $ Left "Parse Error"

Right cnf -> return $ Right $ cnfToExpr cnf

cnfToExpr :: CNF -> Expr

cnfToExpr cnf = andClauses exprList

where

exprList = map uArraytoExpr $ clauses cnf

andClauses :: [Expr] -> Expr

andClauses [] = Const True

andClauses [x] = x

andClauses [x,y,z] = And (And x y) z

andClauses xs = And (andClauses front) (andClauses back)

where (front, back) = splitAt ((length xs + 1) `div` 2) xs

-- Converts UArray (DIMACS format) to our ADT

uArraytoExpr :: UArray Int Int -> Expr

uArraytoExpr = orLiterals . (map intToExpr) . elems

where

intToExpr :: Int -> Expr

intToExpr n | n > 0 = Var $ show n

intToExpr n = Not $ Var $ show $ abs n

orLiterals :: [Expr] -> Expr

orLiterals = foldr1 (\x acc -> Or x acc)

6.3 src/Lib.hs

module Lib where

import Control.Applicative ((<|>))

import Data.Set (Set)

import qualified Data.Set as Set

import Data.Maybe (mapMaybe, catMaybes)

data Expr = Var String

| And Expr Expr

| Or Expr Expr

| Not Expr
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| Const Bool

deriving (Show, Eq)

-- Return the first free variable in the expression.

freeVariable :: Expr -> Maybe String

freeVariable (Const _) = Nothing

freeVariable (Var v) = Just v

freeVariable (Not e) = freeVariable e

freeVariable (Or x y) = freeVariable x <|> freeVariable y

freeVariable (And x y) = freeVariable x <|> freeVariable y

guessVariable :: String -> Bool -> Expr -> Expr

guessVariable var val expr =

case expr of

Var v -> if v == var

then Const val

else Var v

Not expr' -> Not (guess expr')

Or x y -> Or (guess x) (guess y)

And x y -> And (guess x) (guess y)

Const b -> Const b

where guess = guessVariable var val

-- Recursively evaluate the expression until we arrive at

-- the Variable or a Boolean Value

simplify :: Expr -> Expr

simplify (Const b) = Const b

simplify (Var v) = Var v

simplify (Not expr) =

case simplify expr of

Const b -> Const (not b)

expr' -> Not expr'

simplify (Or x y) =

let es = filter (/= Const False) [simplify x, simplify y] in

if Const True `elem` es

then Const True

else

case es of

[] -> Const False

[e] -> e

[e1, e2] -> Or e1 e2

_ -> error "Should never happen."

simplify (And x y) =

let es = filter (/= Const True) [simplify x, simplify y] in

if Const False `elem` es
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then Const False

else

case es of

[] -> Const True

[e] -> e

[e1, e2] -> And e1 e2

_ -> error "Should never happen."

-- Unwrap the Boolean from the DataType

unConst :: Expr -> Bool

unConst (Const b) = b

unConst _ = error "Not Const"

-- Remove Negations - apply De Morgan's Law

fixNegations :: Expr -> Expr

fixNegations expr =

case expr of

Not (Not x) -> fixNegations x

Not (And x y) -> Or (fixNegations $ Not x) (fixNegations $ Not y)

Not (Or x y) -> And (fixNegations $ Not x) (fixNegations $ Not y)

Not (Const b) -> Const (not b)

Not x -> Not (fixNegations x)

And x y -> And (fixNegations x) (fixNegations y)

Or x y -> Or (fixNegations x) (fixNegations y)

x -> x

-- Unwrap the Literals in the expression

literals :: Expr -> Set String

literals (Var v) = Set.singleton v

literals (Not e) = literals e

literals (And x y) = Set.union (literals x) (literals y)

literals (Or x y) = Set.union (literals x) (literals y)

literals _ = Set.empty

data Polarity = Positive | Negative | Mixed deriving (Show, Eq)

-- Find the polarities of the literals in the expression

literalPolarity :: Expr -> String -> Maybe Polarity

-- positive polarity

literalPolarity (Var v) v'

| v == v' = Just Positive

| otherwise = Nothing

-- negative polarity

literalPolarity (Not (Var v)) v'

| v == v' = Just Negative
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| otherwise = Nothing

-- recursively find polarities in And and Or constructors

literalPolarity expr v =

case expr of

And x y -> combinePolarities [x, y]

Or x y -> combinePolarities [x, y]

Not x -> error $ "Not in CNF: negation of a non-literal: " ++ show x

Const _ -> Nothing

_ -> error "Should never happen."

where

combinePolarities es =

let polarities = mapMaybe (flip literalPolarity v) es

in case polarities of

[] -> Nothing

ps -> if all (== Positive) ps

then Just Positive

else if all (== Negative) ps

then Just Negative

else Just Mixed

literalElimination :: Expr -> Expr

literalElimination e =

let ls = Set.toList (literals e)

ps = map (literalPolarity e) ls

-- Determine Polarity that needs to be assigned to the Literal

extractPolarized :: String -> Maybe Polarity -> Maybe (String, Bool)

extractPolarized v (Just Positive) = Just (v, True)

extractPolarized v (Just Negative) = Just (v, False)

extractPolarized _ _ = Nothing

-- Gives you all the Polarity Assignments of each Literal

assignments :: [(String, Bool)]

assignments = catMaybes $ zipWith extractPolarized ls ps

-- Replace the literals with a Boolean Value

replacers :: [Expr -> Expr]

replacers = map (uncurry guessVariable) assignments

replaceAll :: Expr -> Expr

replaceAll = foldl (.) id replacers

in replaceAll e

-- Find the clauses where there is only 1 literal in the clause

unitClause :: Expr -> Maybe (String, Bool)



Parallel SAT Solver with DPLL 13

unitClause (Var v) = Just (v, True)

unitClause (Not (Var v)) = Just (v, False)

unitClause _ = Nothing

-- Create a list of clauses by travesing the tree of And constructors

clauses :: Expr -> [Expr]

clauses (And x y) = clauses x ++ clauses y

clauses expr = [expr]

-- Extract all unit clauses

allUnitClauses :: Expr -> [(String, Bool)]

allUnitClauses = mapMaybe unitClause . clauses

-- this will replace all unit clauses with the appropiate Boolean Value

unitPropagation :: Expr -> Expr

unitPropagation expr = replaceAll expr

where

assignments :: [(String, Bool)]

assignments = allUnitClauses expr

replaceAll :: Expr -> Expr

replaceAll = foldl (.) id (map (uncurry guessVariable) assignments)

6.4 src/ParSolver.hs

module ParSolver where

import Lib

import Control.Parallel.Strategies(Strategy, using, rpar)

import Control.DeepSeq(NFData)

-- Wrapper for parallelizing the problem

satisfiable :: Expr -> Bool

satisfiable (Const b) = b

satisfiable orExpr@(Or _ _) = satisfiableDPLL orExpr

satisfiable (And x y) = and ([satisfiableDPLL x, satisfiableDPLL y]

`using` pairParStrat)

satisfiable _ = undefined

satisfiableDPLL :: Expr -> Bool

satisfiableDPLL = satBase pairParStrat fixedDepth

pairParStrat :: (NFData a)=> Strategy [a]

pairParStrat [a,b] = do

a' <- rpar a

b' <- rpar b

return [a', b']
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pairParStrat _ = undefined

fixedDepth :: Int

fixedDepth = 40

-- In Parallel, evaluate TrueGuess and FalseGuess

-- recurses to a certain depth

satBase :: Strategy [Bool] -> Int -> Expr -> Bool

satBase _ 0 expr = satisfiableDPLLSeq expr

satBase strat depth expr =

case freeVariable expr' of

Nothing -> unConst $ simplify expr'

Just v ->

let trueGuess = satBase strat depth' $

simplify (guessVariable v True expr')

falseGuess = satBase strat depth' $

simplify (guessVariable v False expr')

in or ([trueGuess, falseGuess] `using` strat)

where

depth' = depth - 1

expr' = literalElimination $ fixNegations $

unitPropagation expr

-- sequential satisfiable function after the depth has been reached

satisfiableDPLLSeq :: Expr -> Bool

satisfiableDPLLSeq expr =

case freeVariable expr' of

Nothing -> unConst $ simplify expr'

Just v ->

let trueGuess = simplify (guessVariable v True expr')

falseGuess = simplify (guessVariable v False expr')

in satisfiableDPLLSeq trueGuess ||

satisfiableDPLLSeq falseGuess

where

-- Apply our backtracking search *after* literal elimination

-- and unit propagation have been applied!

expr' = literalElimination $ fixNegations $

unitPropagation expr
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