
Parallel Functional Programming Final Project

Tian Low (ttl2132) Selena Huang (sh3696)

December 2020

1 Introduction

The project we worked on is a nonogram solver in Haskell. A nonogram, also
known as picross, is a rectangle filled with squares that a user will either shade
or not shade in, typically in order to complete a picture. The user is given a
set of numbers in each row that state how many squares are filled in and in
what order. If there is more than one number in the set, this indicates that
there is at least one blank square in between both number of squares. Similar
to the Sudoku solver we saw in class, we wanted to see if we could parallelize
the algorithm on a set of puzzles. We chose nonograms because both of us enjoy
these games, and it is a relaxing and aesthetic game.

Figure 1: An example of a nonogram

1.1 Nonogram Algorithm

The nonogram algorithm we started with was a basic algorithm found on the
HaskellWiki site1. The algorithm to solve a nonogram is similar to that of
Sudoku. It begins by storing all the possible values for each cell, though in this
case there are only two: filled or not filled. These sets are iteratively reduced

1

until there is only one value left, and the cell is then assigned that value. If there
are no cells that can be reduced, a guess is made and the puzzle is split into
two. If a puzzle ends in a contradiction, it is discarded, and if it is successfully
completed, it is collected as a solution.

1.2 Puzzle Data Collection

Because it would be hard see any differences in time in parallelizing one puzzle,
we decided to parallelize the process of solving a collection of puzzles. We
searched for datasets of nonograms stored in text files to parse. We found
a database on github: mikix/nonogram-db2 as well as a website that has a
database of user created puzzles3, that could be exported4 and collected them
into our own puzzle directory, which our main method would then read through
and parse to create a puzzle. From there, we implemented the basic nonogram
solving algorithm, and counted the number of successful puzzles. Our puzzle
directory currently has 82 puzzles.

2 Implementation

To understand better how parallelism works and see if multiple cores actually
improve our times, we first solved all puzzles sequentially before moving on to
parallelism. This is so we have a baseline to start with.

2.1 Sequential Solution

We wanted to see how long it would take for one core to sequentially solve all the
puzzles. The snippet below shows the logic flow of our main sequential method.
This ensures that each puzzle is actually called and solved. The full listing of
the code is in the Code Listing section.

1 function nonogram_solver(file_contents):

2 get (horizontal , vertical) from file_contents

3 solve_puzzle (horizontal , vertical)

4 return True if solved , False otherwise

5

6 function main:

7 puzzle_directory = the path to puzzle directory

8 files = all *.non files in puzzle_directory

9 contents = read files

10 solutions = []

11 for each file_content in contents:

12 solutions.append(nonogram_solver(file_content))

13 return length of solutions

For our sequential solution, we can see that it takes around 10.5s for the oper-
ation to complete for 50 puzzles. The following Threadscope screenshot shows

2

that with multiple cores, the activity moves into the other threads and is spread
more evenly.

Figure 2: Threadscope of the sequential solution on 1 core, 50 puzzles

Figure 3: Threadscope of the sequential solution on 4 cores, 50 puzzles

However, as the number of cores increase, there is actually an increase in the
total time taken due to an increase in time taken for garbage collection and a
constant mutator time. There is also a decrease in productivity.

This confirms the fact that even if the processes are running on separate
threads, overall, running a sequential process on multiple cores does not make
the process more efficient.

2.2 Parallelism

We decided to try different functions from the Control.Parallel.Strategies pack-
age, namely

3

• withStrategy

• rpar

• rparWith

• rdeepseq

• parMap

• parBuffer

Here are some examples of the strategies we took to reach our final result.

1. First, we tried parallelizing by the horizontal and vertical grids from get-
Grid with rpar, but there was very sparse activity after 5 ms and had no
parallelization.

Figure 4: Split on horizontal and vertical grid

2. We then tried parallelizing using parPair (shown as a comment in the code
listing) in beforeAfter, as it seemed that there was not much computation
to do for getGrid; we believed that using parallelization on a larger com-
putation could result in a more balanced and parallel algorithm. However,
this seemed to take much more time and still had low activity throughout.

Figure 5: Utilizing parpair in beforeAfter only

4

3. Combining both resulted in a time somewhere in the middle between both
steps. Interestingly, combining both strategies seemed to make the activ-
ity more balanced throughout, but it still had the same pattern of no
parallelization.

Figure 6: Combining both strategies from attempts 1 and 2

4. Consequently, we moved onto try using rdeepseq on beforeAfter. With this
change, the amount of activity was still not parallelized, but the overall
activity for the single thread seemed to be more balanced throughout
(compared to mainly doing computation in the first of the time taken
in the previous attempt). However, this strategy took much more time,
possible due to additional garbage collection.

Figure 7: rdeepseq on beforeAfter

5. Trying with the same parPair strategy with rdeepseq instead of rpar on
beforeAfter resulted in a very odd pattern, in which there seemed to be
some overlapped parallelization at the beginning and end, but the middle,
only one core was used.

5

Figure 8: parPair with rdeepseq instead of rpar on beforeAfter

6. Using the strategy parPair on lineStepFwd seemed to increase the activity
in the middle of the program to 16% parallelization. One can see in the
graph that all four cores have activity, but unfortunately, for the most
part, the total amount of activity remained low, indicating that there still
was not enough parallelization.

Figure 9: Using the strategy parPair for lineStepFwd

7. Because we were running the algorithm on 50 puzzles, we decided to try
using parMap rpar on the 50 puzzles in Main.hs. The parallelization
increased from 17% to 37%, which was a large jump. One can also see
a sudden spike in activity at the start of the program in Threadscope.
The time also decreased to be slightly more than half the time without
parMap. Below, one can see the program being run on 2 vs. 4 cores.

6

Figure 10: Using the strategy parMap rpar with 2 cores for 50 puzzles

Figure 11: Using the strategy parMap rpar with 4 cores for 50 puzzles

8. The portion with a large amount of activity became a quarter of the time
in four cores, which led us to believe that there was a sequential portion of
the algorithm, and/or there was a particular puzzle that was taking much
longer to computer than others. Consequently, we decided to increase the
number of puzzles to 82. We also checked the profiling tools, noticing that
42% of the time was spent on a single step. Thus, we decided to work on
parallelizing this step.

Figure 12: Screenshot of time distribution

9. The first strategy we tried was using parMap rpar in the this afterX’

7

variable. Between the following two figures, one can see the increase in
time where overall activity was high, namely increasing the parallelization
from 40% to 44%.

Figure 13: Without changing afterX’

Figure 14: After changing afterX’ to use parMap rpar

10. Ultimately, we used parBuffer 100 in afterX’, as well as parMap rdeepseq in
Main.hs. The parallelization increased to almost 50% with these changes.
Using 3 cores drastically decreased the time to 18 seconds, but using 2
cores caused higher productivity for both cores. However, 4 cores was
worse than both in time and performance, and had a drastic dip in activity
at 20 seconds. We also rechecked the time distribution with the profiling
tool, and the total percent of time decreased from 41.2 to 21.6. The
allocation percentage allocation also decreased from 57.7 to 32.2.

Figure 15: parBuffer 100 on 2 cores

8

Figure 16: parBuffer 100 on 3 cores

Figure 17: parBuffer 100 on 4 cores

Figure 18: Final screenshot of time distribution for parBuffer

9

3 Conclusion

3.1 Settings

We ran the code on a dual-core Macbook Pro 2017 to produce these results.

3.2 Analysis

The initialization of multiple puzzles can be processed in parallel, which ulti-
mately decreased the time from 80 seconds to 18 seconds, which is drastic jump.
However, in our solution, the end of the Threadscope graph consistently dropped
in overall activity in the end. We believe that some parts of the algortihm were
run sequentially, namely where we iterated steps. This may have cause the al-
gorithm to run serially after parallelizing the initial computations. There were
more garbage collection and fizzled sparks than desired due to many sparks be-
ing generated, but there were 0 overflowing sparks, which led us to believe that
this was an overall okay parallelization.

3.3 Problems

While working on this project, we encountered a variety of different problems.
The first was that the time taken is exponentially shorter using two or four
cores, but the efficiency doesn’t increase. In addition, we saw that one core was
not receiving tasks while the others were split evenly. The amount of garbage
collection happening during program run time was a significant portion as well.
One other problem was that the run times differed significantly when running
them between our computers, as well as at different times. Finally, we found
that despite parallelizing the step that took the most time, adding more cores
didn’t decrease the total time taken.

3.4 Performance

In terms of performance, we could see pretty obviously that parallelizing the
main got better results when on two cores, but the GC balances out the time
reduced at four cores. When we parallelized the step that took the highest per-
centage of time, we made it exponentially faster, with more parallelization, but
the productivity decreased, and the sparks were not well balanced.

3.5 Final Words

This project was very interesting but difficult. We we were able about the
various methods and strategies of parallelism, but found out that there was much
more we still couldn’t understand, even with Threadscope and the profiling
tools. The hardest part was seeing that something was wrong but not being
able to find the place that was producing the errors. If there was more time,

10

an interesting direction to pursue would be working with larger puzzles or more
puzzles to see if the problems were due to the specific puzzles or certain parts
within the algorithm.

4 Code Listing

1 module Main where

2

3 import Lib

4 import System.Directory (getDirectoryContents)

5 import Control.Parallel.Strategies (parMap , rdeepseq)

6

7

8 -- Second main: Sequentially reads all the contents of all the

files

9 -- Reads all the puzzles in the absolute path because Haskell sucks

10 main :: IO()

11 main = do

12 let path = "C:/Users/chiyo/Desktop/nonogram/puzzles/"

13 files <- getDirectoryContents path

14 let onlyFiles = filter (‘notElem ‘ [".",".."]) files

15 let absoluteFiles = map (path ++) onlyFiles

16 contents <- mapM readFile absoluteFiles

17 let solutions = parMap rdeepseq nonogram contents -- solutions

is of type [Bool]

18 print (length (filter (== True) solutions))

Listing 1: app/Main.hs

1 module Lib where

2

3 import Data.List.Split(splitOn)

4 import qualified Data.Set as Set

5 import Data.Set (Set)

6 import qualified Data.Map as Map

7 import Data.Map (Map)

8 import Data.List

9 import Control.Parallel.Strategies(NFData , rpar , withStrategy ,

parBuffer , rdeepseq , parList , using)

10

11 --

--

12 -- Parsing

13 -- parses the Ints from the Chars

14 clean :: [Char] -> [Int]

15 clean row = map (\word -> read word::Int) $ splitOn "," row

16

17 -- reads in the content of the file , outputs True if puzzle is

solved , False otherwise

18 nonogram :: String -> Bool

19 nonogram puzzle_board =

20 let info = init.tail $ dropWhile (/="") $ lines puzzle_board in

11

21 let h = map (\line -> clean line) $ tail $ takeWhile (/= "")

info in

22 let v = map (\line -> clean line) $ tail $ filter (/= "") (

dropWhile (/= "") info) in

23 check $ solve (puzzle h v)

24

25 --

--

26 -- Cells

27

28 newtype Value = Value Int

29 deriving (Eq , Ord , Show)

30

31 -- | Negative values encode empty cells , positive values filled

cells

32 empty :: Value -> Bool

33 empty (Value n) = n <= 0

34

35 full :: Value -> Bool

36 full = not . empty

37

38 type Choice = Set Value

39

40 --

--

41 -- Puzzle

42

43 type Grid = [[Choice]]

44

45 -- | Datatype for solved and unsolved puzzles

46 data Puzzle = Puzzle

47 -- | List of rows , containing horizontal choices for each cell

48 { gridH :: Grid

49 -- | List of columns , containing vertical choices for each cell

50 , gridV :: Grid

51 -- | What is allowed before/after a specific value?

52 -- (after (Value 0)) are the values allowed on the first

position

53 , afterH , beforeH :: [Value -> Choice]

54 , afterV , beforeV :: [Value -> Choice]

55 }

56

57 instance Eq Puzzle where

58 p == q = gridH p == gridH q

59

60 instance Show Puzzle where

61 show = dispGrid . gridH

62

63 -- | Transpose a puzzle (swap horizontal and vertical components)

64 transposeP :: Puzzle -> Puzzle

65 transposeP p = Puzzle

66 { gridH = gridV p

67 , gridV = gridH p

68 , afterH = afterV p

69 , beforeH = beforeV p

12

70 , afterV = afterH p

71 , beforeV = beforeH p

72 }

73

74 -- | Display a puzzle

75 dispGrid :: [[Set Value]] -> [Char]

76 dispGrid = concatMap (\r -> "[" ++ map disp ’’ r ++ "]\n")

77 where disp ’’ x

78 | Set.null x = ’E’

79 | setAll full x = ’1’

80 | setAll empty x = ’0’

81 | otherwise = ’/’

82

83

84 --

--

85 -- Making puzzles

86

87 -- | Generate puzzle

88 puzzle :: [[Int]] -> [[Int]] -> Puzzle

89 puzzle h v = Puzzle

90 { gridH = gH

91 , gridV = gV

92 , afterH = fst abH

93 , beforeH = snd abH

94 , afterV = fst abV

95 , beforeV = snd abV

96 }

97 where rows = length h

98 cols = length v

99 ordersH = map order h

100 ordersV = map order v

101 (abH , abV) = (beforeAfter ordersH , beforeAfter ordersV)

102 (gH , gV) = (getGrid cols ordersH , getGrid rows ordersV)

103

104 getGrid :: Ord a => Int -> [[a]] -> [[Set a]]

105 getGrid numCells orders = map(replicate numCells . Set.fromList)

orders

106

107 beforeAfter :: [[Value]] -> ([Value -> Choice], [Value -> Choice])

108 beforeAfter orders = (after , before)

109 where before = map mkAfter $ map reverse orders

110 after = map mkAfter orders

111

112 -- | Gets possible values for a line in order

113 order :: [Int] -> [Value]

114 order = order ’ 1

115 where order ’ n [] = [Value (-n), Value (-n)]

116 order ’ n (x:xs) = [Value (-n), Value (-n)] ++ map Value [n..

n+x-1] ++ order ’ (n+x) xs

117

118 mkAfter :: [Value] -> Value -> Choice

119 mkAfter ord = (mkAfterM ord Map .!)

120

121 mkAfterM :: [Value] -> Map Value (Set Value)

122 mkAfterM ord = Map.fromListWith (Set.union) aftersL

13

123 where aftersL =

124 (if length ord > 2

125 then [(Value 0, Set.singleton (ord !! 2))]

126 else []) ++

127 zip (Value 0:ord) (map Set.singleton ord)

128

129 --

--

130 -- Checking puzzles

131

132 check :: [Puzzle] -> Bool

133 check ps

134 | length ps == 0 = False

135 | invalid $ head ps = False

136 | done $ head ps = True

137 | otherwise = False

138

139 done :: Puzzle -> Bool

140 done = all (all ((==1) . Set.size)) . gridH

141

142 invalid :: Puzzle -> Bool

143 invalid = any (any Set.null) . gridH

144

145 --

--

146 -- Algorithm Stepping

147

148 -- | Deterministic solving

149 solveD :: Puzzle -> Puzzle

150 solveD = consecSame . iterate step

151

152 -- | Combine steps

153 step :: Puzzle -> Puzzle

154 step = hvStep . transposeP . lineStep . transposeP . lineStep

155

156 -- | Single step

157 lineStep :: Puzzle -> Puzzle

158 lineStep p = p { gridH = gridH ’’ }

159 where gridH ’ = zipWith lineStepFwd (afterH p) (gridH p)

160 gridH ’’ = zipWith lineStepBack (beforeH p) (gridH ’)

161

162 -- | lineStep on a single line forward and backward

163 lineStepFwd :: (Value -> Set Value) -> [Set Value] -> [Set Value]

164 lineStepFwd after row = lineStepFwd ’ (after (Value 0)) row

165 where lineStepFwd ’ _ [] = []

166 lineStepFwd ’ afterPrev (x:xs) = x’ : lineStepFwd ’ afterX ’ xs

167 where x’ = Set.intersection x afterPrev

168 afterX ’ = Set.unions $ withStrategy (parBuffer 100

rpar) $ map after $ Set.toList x’

169

170 lineStepBack :: (Value -> Set Value) -> [Set Value] -> [Set Value]

171 lineStepBack before = reverse . lineStepFwd before . reverse

172

173 -- | Sharing information between the horizontal grid and vertical

grid

14

174 hvStep :: Puzzle -> Puzzle

175 hvStep p = p { gridH = gridH ’, gridV = transpose gridV ’t }

176 where (gridH ’, gridV ’t) = zMap (zMap singleStep) (gridH p) (

transpose (gridV p))

177

178 -- Step on a single cell

179 singleStep :: Set Value -> Set Value -> (Set Value , Set Value)

180 singleStep h v = filterCell empty . filterCell full $ (h,v)

181

182 -- Step on a single cell , for a single condition , if either h or v

satisfies the condition

183 -- then the other is filtered so it will satisfy as well

184 filterCell :: (a -> Bool) -> (Set a, Set a) -> (Set a, Set a)

185 filterCell cond (h,v)

186 | setAll cond h = (h, Set.filter cond v)

187 | setAll cond v = (Set.filter cond h, v)

188 | otherwise = (h, v)

189

190 --

--

191 -- Nondeterministic

192

193 -- | Solve a puzzle , gives all solutions

194 solve :: Puzzle -> [Puzzle]

195 solve p

196 | all (all ((==1) . Set.size)) . gridH $ p’ = [p’] -- single

solution

197 | invalid p’ = [] -- no solutions

198 | otherwise = concatMap solve (guess p’) -- we have to guess

199 where p’ = solveD p

200

201 -- | Branch out to multiple possible choices for grids

202

203 guess :: Puzzle -> [Puzzle]

204 guess p = map (\gh -> p {gridH = gh}) gridHs

205 where gridHs = getMultiple (getMultiple getChoices) (gridH p)

206

207 -- | Gets multiple possible choices for a single cell

208 getChoices :: Choice -> [Choice]

209 getChoices = map Set.singleton . Set.toList

210

211 -- | Tries to split a single item in a list using the function f

212 -- Stops at the first position where f has more than 1 result.

213 getMultiple :: (a -> [a]) -> [a] -> [[a]]

214 getMultiple _ [] = []

215 getMultiple f (x:xs)

216 | length fx > 1 = map (:xs) fx

217 | length fxs > 1 = map (x:) fxs

218 | otherwise = []

219 where fx = f x

220 fxs = getMultiple f xs

221

222 --

--

223 -- Utilities

15

224

225 -- | parallelization , especially on zMap

226 par ’ :: NFData a => [a] -> [a]

227 par ’ = (‘using ‘ parList rdeepseq)

228

229 -- Examples of some other strategies that we tried

230 -- parPair2 = do

231 -- evalTuple2 (rparWith rdeepseq) (rparWith rdeepseq)

232

233 -- parRds :: NFData a => [a] -> [a]

234 -- parRds = (‘using ‘ parBuffer 250 rdeepseq)

235

236 -- parPair :: Strategy (a,b)

237 -- parPair (a,b) = do

238 -- a’ <- rpar a

239 -- b’ <- rpar b

240 -- return (a’,b’)

241

242 -- | Set.all , similar to Data.List.all

243 setAll :: (a -> Bool) -> Set a -> Bool

244 setAll f = all f . Set.toList

245

246 -- | A zip -like map

247 zMap :: (a -> b -> (c, d)) -> [a] -> [b] -> ([c], [d])

248 zMap f a b = unzip $ zipWith f a b

249

250 -- | Find the first item in a list that is repeated

251 consecSame :: Eq a => [a] -> a

252 consecSame (a:b:xs)

253 | a == b = a

254 | otherwise = consecSame (b:xs)

255

256 consecSame _ = error "Invalid"

Listing 2: src/Lib.hs

1 module Main where

2

3 import Test.HUnit

4 import Lib

5 import qualified Data.Set as Set

6

7 testE2E :: Test

8 testE2E = TestCase (do

9 content <- readFile "C:/ Users/chiyo/Desktop/nonogram/

puzzles /1. non"

10 let info = init.tail $ dropWhile (/="") $ lines content

11 let h = map (\line -> clean line) $ tail $ takeWhile (/= "

") info

12 let v = map (\line -> clean line) $ tail $ filter (/= "")

(dropWhile (/= "") info)

13 assertEqual "horizontal grid ,"

[[2] ,[2 ,1] ,[1 ,1] ,[3] ,[1 ,1] ,[1 ,1] ,[2] ,[1 ,1] ,[1 ,2] ,[2]] h

14 assertEqual "vertical grid ,"

[[2 ,1] ,[2 ,1 ,3] ,[7] ,[1 ,3] ,[2 ,1]] v

15 assertEqual "solution for puzzle 1.non ," "[01100]\n[01101]\

16

n[00101]\n[01110]\n[10100]\n[10100]\n[00110]\n[01010]\n[01011]\

n[11000]\n" $ show $ head $ solve (puzzle h v))

16

17 testInvalid :: Test

18 testInvalid = TestCase (do

19 assertEqual "test invalid puzzle" "False" $ show $ check $
solve (puzzle [[2] ,[2]] [[5] ,[5]])

20)

21

22 testOrder :: Test

23 testOrder = TestCase (do

24 assertEqual "possible line values" (map Value [-1,-1, 1,

-2,-2, 2,3, -4,-4, 4,5,6, -7,-7, 7, 8, 9, 10, -11, -11]) $
order [1,2,3,4]

25)

26

27 testFilterCell :: Test

28 testFilterCell = TestCase (do

29 let filterSol = Set.fromList $ map Value [2]

30 let noneFiltered = Set.fromList $ map Value [2,1]

31 assertEqual "filtering cells" (filterSol , noneFiltered) $
filterCell full (Set.fromList $ map Value [-8,-7,-1,2],

noneFiltered)

32)

33

34 testSS :: Test

35 testSS = TestCase (do

36 let filterSol = Set.fromList $ map Value [-2,2,3]

37 let noneFiltered = Set.fromList $ map Value [-2]

38 assertEqual "double filtering single cell" (noneFiltered ,

noneFiltered) $ singleStep filterSol noneFiltered

39)

40

41 testZMap :: Test

42 testZMap = TestCase (do

43 let sol = ["ad", "bcef"]

44 let result = zMap (\x y -> (x++y, x++y)) ["a", "bc"] ["d",

"ef"]

45 assertEqual "simply zip map example" (sol , sol) result

46)

47

48 testConsecSame :: Test

49 testConsecSame = TestCase (do

50 let p1 = (puzzle [[1] ,[2] ,[3 ,4]] [[1] ,[2] ,[3 ,4]])

51 let p2 = (puzzle [[5] ,[9] ,[3 ,4]] [[5] ,[9] ,[3 ,4]])

52 assertEqual "only first consecutive puzzles are returned"

p1 $ consecSame [p1 , p1, p2, p2]

53)

54

55 tests :: Test

56 tests = TestList [TestLabel "testE2E" testE2E , TestLabel "testOrder

" testOrder , TestLabel "testFilterCell" testFilterCell ,

57 TestLabel "testSS" testSS , TestLabel "testZMap"

testZMap , TestLabel "testInvalid" testInvalid]

58

59 main :: IO Counts

60 main = do

17

61 runTestTT tests

Listing 3: test/Spec.hs

5 References

1. https://wiki.haskell.org/Nonogram
2. https://github.com/mikix/nonogram-db
3. https://webpbn.com/
4. https://webpbn.com/export.cgi

18

	Introduction
	Nonogram Algorithm
	Puzzle Data Collection

	Implementation
	Sequential Solution
	Parallelism

	Conclusion
	Settings
	Analysis
	Problems
	Performance
	Final Words

	Code Listing
	References

