
Modeling Galaxies: Barnes-Hut Approximation

Hans Montero, Rhys Murray

{hjm2133, ram2269}@columbia.edu

cs4995.003 Final Project
December 23rd, 2020

1 n-body Problem

Given a set of celestial bodies with mass, initial velocity, and initial position, we would like to simulate the
motion of these bodies over time under the influence of gravity. Such simulations allow us to model the
collisions and interactions of large-scale galaxy clusters. While there is a closed form solution for n = 2,
no such formula exists for n ≥ 3, so computationally expensive numerical solutions are required. These
numerical methods vary in their approaches to calculating the effect of gravity on each body. We know from
classical kinematics that the gravitational force on one body by another separated by distance r is given by
the following (where G is the gravitational constant):

F = G
m1m2

r2

A näıve algorithm would run in O(n2) time, where for each time step, the algorithm calculates the net force
on a given body by iterating over the entire set of bodies and accounting for every single body, regardless of
distance. This algorithm clearly will not scale well at the galaxy-level with a huge number of bodies. Further
overhead would be added by calculating the positions of the bodies at each step and displaying them. We
must seek a more efficient algorithm if we wish to seamlessly model large systems over more fine-grained
periods of time.

2 Barnes-Hut Approximation

The Barnes-Hut Approximation seeks to cut down computation by grouping very distant masses together
into one larger mass. The first step is to divide up the n bodies into a quadtree (for 2D simulations) to group
together nearby masses. Then, for each body in the tree, we calculate the contribution of other bodies in the
same way as the näıve algorithm. However, if a group of bodies is sufficiently far away, we aggregate them
and use their combined mass and center of gravity for our computation. By leveraging this approximation,
the algorithm’s time complexity improves to O(n log n). Whether a region is considered ”distant” or not
depends on the ratio of its size to its distance from the body. If this ratio exceeds a threshold value, the region
is approximated as above. This threshold value can be adjusted depending on desired speed or accuracy of
the simulation.

2.1 Data Types

We defined three main data types for our implementation: Body, QuadInfo, and QuadTree.

The Body type tracks a body’s position and velocity vectors, along with other physical properties:

1 data Body = Body { mass :: Double -- For force calculation

2 , xCord :: Double

3 , yCord :: Double

4 , xVel :: Double

5 , yVel :: Double

6 , radius :: Double -- For visualization

7 }

1

The QuadInfo type holds information about a quadrant that we use in Quadtree insertion and force calcu-
lation:

1 data QuadInfo = QuadInfo { xl :: Double -- Quadrant boundaries

2 , xr :: Double

3 , yb :: Double

4 , yt :: Double

5 , com :: CenterMass -- (x, y, mass)

6 }

We can now define the QuadTree type, which is a recursive algebraic type:

1 data QuadTree = QuadTree QuadTree QuadTree QuadTree QuadTree QuadInfo

2 | QuadNode (Maybe Body) QuadInfo

This representation allows us to express the two cases for a quadrant: either it is occupied by at most 1
body, or it has been further divided into quadrants because there are at least two bodies in it.

2.2 Implementation

The main loop of the iterative Barnes-Hut algorithm works by approximating the acceleration due to gravity
on every body in the tree, updating their velocity and positions, and recreating a new QuadTree out of
the updated bodies for each timestep dt. Here is our main barnesHut function that allows us to run the
algorithm iteratively:

1 barnesHut :: QuadTree -> Double -> QuadTree

2 barnesHut oldTree dt = newTree

3 where oldbodyList = toList oldTree

4 updatedBodyList = map (\b -> approximateForce oldTree b dt) oldbodyList

5 movedBodyList = map (doTimeStep dt) updatedBodyList

6 newTree = calcCOM $ fromList movedBodyList (getInfo oldTree)

Note two operations in this routine: fromList and map ... approximateForce. We will attempt to
parallelize them later on.

2

2.3 Animation

Rendering the simulation as a 2D animation is done via Haskell’s gloss library which provides handy
functions to draw on the screen and hides the details of working directly with OpenGL.

1 runSimulation :: QuadTree -> (QuadTree -> Double -> QuadTree) -> IO ()

2 runSimulation qt updateFunc = simulate (InWindow "Barnes-Hut" (1500, 1500) (10, 10))

3 black 60

4 qt

5 (\ qt' -> pictures $ drawQuadTree qt' [])

6 (_ dt qt' -> updateFunc qt' (float2Double dt))

Running the simulation via gloss is as simple as passing a list of Pictures to draw the current state and
a function to generate a new state. In our case, we draw all of the bodies on the screen at their current
positions and update our state (the QuadTree) by running the Barnes-Hut algorithm on it.

Here’s a screenshot of the animation, showing a celestial system orbiting around a supermassive black hole
in the center:

We also drew the quadrant boundaries in light grey to show that no two bodies share the same quadrant.

3

3 Parallelization

To further optimize this approximation algorithm, we can parallelize the two major computational steps.
First, the quadtree construction can be delegated to four threads, as each ”quadrant” of the tree can be
constructed independently. We expect to see some minor speed up here, as we are not guaranteed to see even
workloads for each of those quadrant constructing threads. Second, and more importantly, we can parallelize
the quadtree traversal for calculating the gravitational force on a certain body. This is a perfect example of
data parallelism, given the enormous amounts of bodies in realistic models and the fact that these traversals
are independent of one another. Parallelizing this step should greatly speed up the runtime of the algorithm,
much more so than the parallelization of the quadtree construction. We chose a reference simulation of 1000
bodies simulated for 500 timesteps as a benchmark for comparing our different attempts at parallelization.

What follows is a report of the different strategies we used and how they performed at improving the two
aforementioned computational steps.

3.1 Force Computation

3.1.1 parMap and parBuf Strategies

To implement any of the parallel strategies, we must first create instances of the NFData type classes for our
custom data types. After this small change, implementing parMap and parBuffer in our simulation is as
simple as changing our update function to call the appropriate parallel function.

1 barnesHutParMap :: QuadTree -> Double -> QuadTree

2 barnesHutParMap oldTree dt = newTree

3 where oldbodyList = toList oldTree

4 updatedBodyList = parMap rdeepseq (\b -> approximateForce oldTree b dt) oldbodyList

5 movedBodyList = map (doTimeStep dt) updatedBodyList

6 newTree = calcCOM $ fromList movedBodyList (getInfo oldTree)

Note that we must use rdeepseq to deeply evaluate each of the bodies to normal form. This strategy creates
sparks to evaluate the forces on each of the bodies in parallel. Spark results can be seen below:

SPARKS: 50000 (47371 converted, 0 overflowed, 0 dud, 2203 GC’d, 426 fizzled)

We can see that most sparks are being converted, but a significant percentage is being garbage collected or
is fizzling, indicating that each work unit is too small. parBuffer reduces this problem by sparking only a
certain number of sparks at a time (100 in our case), but we still ran into similar problems with unbalanced
workloads. This problem can be eliminated entirely by chunking the list and giving each core more work.
However, even with this highly unbalanced work load, we saw significant speedups that will be detailed
below.

3.1.2 parListChunks and parBufChunks Strategies

Seeing how the previous two strategies were too fine-grained, we sought out chunking strategies to ensure
that the CPUs have decently sized work items to compute. We tried the built in parListChunks strategy
and set it up in a way that would allow us to programmatically try different chunk sizes so we could figure
out which was the ideal size for a given CPU count:

1 barnesHutParListChunks :: Int -> QuadTree -> Double -> QuadTree

2 barnesHutParListChunks cz oldTree dt = newTree

3 where oldbodyList = toList oldTree

4 newTree = fromList (map (\b ->

5 doTimeStep dt $ approximateForce oldTree b dt) oldbodyList

6 `using` parListChunk cz rdeepseq) (getInfo oldTree)

4

This strategy would ensure us that less sparks would be created and that each spark would have more
meaningful work to do. Surely enough, the spark stats showed that this strategy was indeed more successful:

SPARKS: 6500 (6500 converted, 0 overflowed, 0 dud, 0 GC’d, 0 fizzled)

In the next section, we will show some more experiments that we ran for parListChunks to find its ideal
chunk size across different CPU counts and to see its spark behavior through Threadscope.

Out of curiosity, we also developed a strategy of our own, named barnesHutParBufChunks. Seeing how
well parListChunks performed, we were wondering if we could combine its benefits with parBuffer, which
would ensure that we don’t overwhelm the system with too many sparks at any given time. We imagined
this would come in handy for larger datasets.

1 barnesHutParBufChunks :: Int -> QuadTree -> Double -> QuadTree

2 barnesHutParBufChunks cz oldTree dt = newTree

3 where oldbodyList = toList oldTree

4 updatedBodyList = concat (map (map (\b ->

5 doTimeStep dt $ approximateForce oldTree b dt)) (chunksOf cz oldbodyList)

6 `using` parBuffer 100 rdeepseq)

7 newTree = calcCOM $ fromListPar updatedBodyList (getInfo oldTree)

We had to manually replicate the chunking from parListChunks by using chunksOf to break up the
dataset. The spark stats showed that this strategy was indeed helpful in controlling spark creation:

SPARKS: 4500 (4500 converted, 0 overflowed, 0 dud, 0 GC’d, 0 fizzled)

In the next section, we’ll compare the performances of barnesHutParListChunks and barnesHutParBufChunks

to see which is actually more preferable in terms of runtime.

3.1.3 Analysis

To begin, we can plot all four of the strategies we mentioned on the same set of axes to see which one is
worth investigating a little deeper. For the chunking strategies, we used their optimal chunk sizes for this
experiment (see discussion below on optimal chunk size).

As expected, the chunking strategies perform significantly better than the non-chunking strategies. This is
probably because the chunking strategies create less sparks and thus suffer less overhead in their creation.

5

We were also curious how barnesHutParListChunks and barnesHutParBufChunks would perform in our
experiments. As we can see, they pretty much performed similarly, with the latter only winning out very
slightly at 8 cores. Below, we tabulated the speedup results from all four strategies on different core counts
compared to the original sequential algorithm. The speedups didn’t match up with core count 1:1, but that
was to be expected – there are still significant portions of the algorithm that aren’t parallelized. Also, we
believe the superlinear speedups, i.e. a 2.5x speedup for 2 cores, is due to increases in memory allocation
when run with multiple cores. This leads to less frequent garbage collection and thus even faster runtimes.

Table 1: Speedups achieved

Cores pm pb plc pbc

2 2.4625 2.4261 2.8597 2.8148

4 3.3543 4.3000 4.7130 4.6420

6 3.5041 5.0795 5.3945 5.3130

8 3.2639 5.1419 5.7739 5.9278

The next question to ask here, seeing that the chunking strategies are the best, is ”what is the ideal chunk
size for chunking strategies?”. We designed a new experiment where we would try different chunk sizes at
different CPU counts for barnesHutParListChunks. Here are the results:

All four plots achieve their minimum at chunkSize = numBodies/numCPUs. This chunk size ensures that
each core will have a balanced amount of work to do and that no other core is just standing by. Users of
the chunking strategies should therefore calculate this ratio and use it as the chunk size to achieve optimal
runtime and resource usage.

We’ve seen that barnesHutParListChunks has a perfect conversion rate and that we can configure it to use
an optimal chunk size. Finally, we should analyze the performance of the algorithm using Threadscope to
observe actual CPU usage.

6

On the one hand, we’re very pleased with the CPU usage. We are almost always using all eight cores to their
fullest extent, which means the strategy really does ensure good balancing. There are some dips though,
and this probably has to do with the single-threaded aspects of the algorithm (like QuadTree creation and
printing out information). On the other hand, the pauses due to the garbage collector are a little troubling.
Our implementation seems to use a very large amount of memory that often gets discarded, which means the
GC will have to step in quite frequently. This has to do with the QuadTree creation per iteration. We can’t
easily update it given the pure nature of Haskell so we instead create an entirely new one. The sizes of the
QuadTrees can be quite large, so it probably is costly to discard them so frequently like we are. Nonetheless,
because barnesHutParListChunks saw excellent spark conversion, speedups, and CPU usage, we are quite
proud of the implementation!

3.2 Parallel QuadTree Construction

As mentioned above, we can also exploit natural parallelism in the QuadTree construction. Each quadrant
can be constructed independently of one another and then stitched back together in the end.

1 fromListPar :: [Body] -> QuadInfo -> QuadTree

2 fromListPar bs qi = QuadTree nw' ne' sw' se' qi

3 where (QuadTree nw ne sw se _) = emptyQTree minNum maxNum minNum maxNum

4 (minNum, maxNum) = squareBounds qi bs

5 makeTreeForQuad quad = (flip fromList (getInfo quad) . filter (inQuad quad)) bs

6 (nw', ne', sw', se') = runEval $ do

7 parNW <- rparWith rdeepseq (makeTreeForQuad nw)

8 parNE <- rparWith rdeepseq (makeTreeForQuad ne)

9 parSW <- rparWith rdeepseq (makeTreeForQuad sw)

10 parSE <- rparWith rdeepseq (makeTreeForQuad se)

11 return (parNW, parNE, parSW, parSE)

Runtimes for the plc strategy with and without parallel insertion can be seen below. fromListPar

provides a noticeable yet very small decrease in runtime. This increases with more and more bodies in the
simulation as we’d expect. However, once again the workload is unbalanced, and we began to see similar
fizzling problems as with parMap and parBuffer. The number of bodies in each quadrant is vastly different
in some timesteps than others, and this imbalance leads to occasional fizzles.

7

4 Conclusion

In our journey to optimize the runtime of the Barnes-Hut algorithm and parallelize it, we learned a few
key lessons about parallelization. First, not all work is worth being parallelized. We saw this when we
were implementing parallel QuadTree construction. If the work units are too small, the overhead from spark
management will win out and reduce speedups. Next, we learned that more cores doesn’t always mean better
performance. This is very algorithm dependent and requires good work balancing. We observed this while
experimenting for the ideal chunk size for barnesHutParListChunks – some chunk sizes are so non-ideal
that they yield worse runtimes as you increase the number of cores. This all ties into the most important
lesson we got out of this: parallelization in Haskell requires experimentation. In other languages, we would
often just blackbox away parallelization mechanisms and just assume we’ll see speedups. While that can still
be true in Haskell, we have more power here in fine tuning that speedup. We are able to choose different
strategies which, as we’ve proven above, yield different speedups. While the process of experimentation isn’t
as easy as simply blackboxing it all away, it is certainly more rewarding.

The project repository can be found here: https://github.com/hmontero1205/barnes-hut

5 Code Listing

Building from Source

$ # Requires stack.

$ stack install

$ # Assuming you have ~/.local/bin in your path,

$ barnes-hut -h

usage: barnes-hut [-r <min-radius> <max-radius> -n <num-bodies> -m <max-mass> |

-i <iterations> -n <numBodies> [pm|plc <chunk-size>|pb|pbc <chunk-size>]]

1 {- Main.hs: Entrypoint for our implementation -}

2 module Main where

3 import QuadTree

4 import System.Random

5 import Physics

6 import Visualize

7 import Control.Parallel.Strategies(parMap, rdeepseq, parListChunk, using, parBuffer,

Eval)↪→

8

https://github.com/hmontero1205/barnes-hut

8 import System.Environment (getArgs, getProgName)

9 import System.Exit

10 import Data.List.Split(chunksOf)

11

12 empty :: QuadTree

13 empty = emptyQTree (-20000) 20000 (-20000) 20000

14

15

16 barnesHutParMap :: QuadTree -> Double -> QuadTree

17 barnesHutParMap oldTree dt = newTree

18 where oldbodyList = toList oldTree

19 updatedBodyList = parMap rdeepseq (\b -> approximateForce oldTree b dt)

oldbodyList↪→

20 movedBodyList = map (doTimeStep dt) updatedBodyList

21 newTree = calcCOM $ fromList movedBodyList (getInfo oldTree)

22

23 barnesHutParBufChunks :: Int -> QuadTree -> Double -> QuadTree

24 barnesHutParBufChunks cz oldTree dt = newTree

25 where oldbodyList = toList oldTree

26 updatedBodyList = concat (map (map (\b -> doTimeStep dt $ approximateForce

oldTree b dt)) (chunksOf cz oldbodyList) `using` parBuffer 100 rdeepseq)↪→

27 newTree = calcCOM $ fromListPar updatedBodyList (getInfo oldTree)

28

29 barnesHutParListChunks :: Int -> QuadTree -> Double -> QuadTree

30 barnesHutParListChunks cz oldTree dt = newTree

31 where oldbodyList = toList oldTree

32 newTree = fromListPar (map (\b -> doTimeStep dt $ approximateForce oldTree b dt)

oldbodyList `using` parListChunk cz rdeepseq) (getInfo oldTree)↪→

33

34 barnesHutParBuffer :: QuadTree -> Double -> QuadTree

35 barnesHutParBuffer oldTree dt = newTree

36 where oldbodyList = toList oldTree

37 updatedBodyList = map (\b -> approximateForce oldTree b dt) oldbodyList `using`

parBuffer 100 rdeepseq↪→

38 movedBodyList = map (doTimeStep dt) updatedBodyList

39 newTree = calcCOM (fromList movedBodyList (getInfo oldTree))

40

41 barnesHut :: QuadTree -> Double -> QuadTree

42 barnesHut oldTree dt = newTree

43 where oldbodyList = toList oldTree

44 updatedBodyList = map (\b -> approximateForce oldTree b dt) oldbodyList

45 movedBodyList = map (doTimeStep dt) updatedBodyList

46 newTree = calcCOM $ fromListPar movedBodyList (getInfo oldTree)

47

48 makeBHSystem :: Int -> Int -> QuadTree

49 makeBHSystem n spacing = calcCOM $ insert blackhole $ fromList orbiters (getInfo empty)

50 where blackhole = Body 5000000 0 0 0 0 1

51 orbiters = [(\x -> generateOrbiter blackhole (fromIntegral x) 10) (spacing +

spacing * i) | i <- [0..(n-2)]]↪→

52

53 makeBHSystemRandom :: Int -> [Double] -> [Double] -> [Double] -> QuadTree

54 makeBHSystemRandom n radii angles masses = calcCOM $ insert blackhole $ fromList

[generateOrbiterAngle blackhole radius' mass' angle' | (radius', mass', angle') <-

combinedList] (getInfo empty)

↪→

↪→

55 where blackhole = Body 500000000 0 0 0 0 1

56 combinedList = take n $ zip3 radii angles masses

57

9

58 simpleLoop :: Int -> (QuadTree -> Double -> QuadTree) -> QuadTree -> Double -> QuadTree

59 simpleLoop n f tree dt

60 | n > 0 = simpleLoop (n - 1) f (f (calcCOM tree) dt) dt

61 | otherwise = calcCOM tree

62

63 simpleLoop' :: Int -> QuadTree -> Double -> Eval QuadTree

64 simpleLoop' n tree dt

65 | n <= 0 = return tree

66 | otherwise = do let oldBodyList = toList tree

67 newBodyList <- parListChunk 24 rdeepseq (map (\b -> doTimeStep dt $

approximateForce tree b dt) oldBodyList)↪→

68 newBodyList' <- rdeepseq newBodyList

69 simpleLoop' (n - 1) (calcCOM $ fromList newBodyList' (getInfo tree))

dt↪→

70

71 doUsage :: IO ()

72 doUsage = do progName <- getProgName

73 die $ "usage: " ++ progName ++

74 "[-r <minRadius> <maxRadius> -n <numBodies> -m <maxMass> | -i

<iterations> -n <numBodies> [pm|plc <chunk-size>|pb|pbc

<chunk-size>]]"

↪→

↪→

75

76 randomlist :: Random a => a -> a -> IO [a]

77 randomlist a b = fmap (randomRs (a,b)) newStdGen

78

79 main :: IO ()

80 main = do

81 args <- getArgs

82 case args of

83 ["-r", minRadius, maxRadius, "-n",

84 numBodies, "-m", maxMass] -> do radii <- randomlist (read minRadius) (read

maxRadius :: Double)↪→

85 angles <- randomlist 0 (2 * pi :: Double)

86 masses <- randomlist 0 (read maxMass :: Double)

87 runSimulation (makeBHSystemRandom (read numBodies)

radii angles masses) (barnesHutParListChunks

((read numBodies) `div` 4))--(\qt _ -> qt)

↪→

↪→

88 ["-i", its, "-n", nb] -> do radii <- randomlist (1000) (50000 :: Double)

89 angles <- randomlist 0 (2 * pi :: Double)

90 masses <- randomlist 0 (1000 :: Double)

91 print $ simpleLoop (read its) barnesHut

(makeBHSystemRandom (read nb) radii angles masses)

0.5

↪→

↪→

92 ["-i", its, "-n", nb, "pm"] -> print $ simpleLoop (read its) barnesHutParMap (bhs

(read nb)) 0.5↪→

93 ["-i", its, "-n", nb, "plc", cz] -> do radii <- randomlist (1000) (50000 :: Double)

94 angles <- randomlist 0 (2 * pi :: Double)

95 masses <- randomlist 0 (1000 :: Double)

96 print $ simpleLoop (read its)

(barnesHutParListChunks $ read cz)

(makeBHSystemRandom (read nb) radii

angles masses) 0.5

↪→

↪→

↪→

97 ["-i", its, "-n", nb, "pbc", cz] -> do radii <- randomlist (1000) (50000 :: Double)

98 angles <- randomlist 0 (2 * pi :: Double)

99 masses <- randomlist 0 (1000 :: Double)

10

100 print $ simpleLoop (read its)

(barnesHutParBufChunks $ read cz)

(makeBHSystemRandom (read nb) radii

angles masses) 0.5

↪→

↪→

↪→

101 ["-i", its, "-n", nb, "pb"] -> print $ simpleLoop (read its) barnesHutParBuffer

(bhs (read nb)) 0.5↪→

102 _ -> doUsage

103 where bhs nb' = makeBHSystem nb' 1000

1 {- QuadTree.hs: Quadtree definition and helpers -}

2 module QuadTree where

3 import Control.DeepSeq

4 import Control.Parallel.Strategies(rdeepseq, runEval, rparWith)

5

6 data Body = Body { mass :: Double

7 , xCord :: Double

8 , yCord :: Double

9 , xVel :: Double

10 , yVel :: Double

11 , radius :: Double

12 }

13

14 instance NFData Body where

15 rnf (Body m x y xv yv r) = rnf m `deepseq`

16 rnf x `deepseq`

17 rnf y `deepseq`

18 rnf xv `deepseq`

19 rnf yv `deepseq`

20 rnf r

21

22 instance Eq Body where

23 b1 == b2 = (xCord b1 == xCord b2) && (yCord b1 == yCord b2)

24

25 data CenterMass = CenterMass { cMass :: Double

26 , cx :: Double

27 , cy :: Double

28 }

29

30 instance NFData CenterMass where

31 rnf (CenterMass m x y) = rnf m `deepseq` rnf x `deepseq` rnf y

32

33 instance Show CenterMass where

34 show (CenterMass ma xx yy) = "COM " ++ show ma ++ " @ " ++ "(" ++ show xx ++ ", " ++

show yy ++ ")"↪→

35

36 data QuadInfo = QuadInfo { xl :: Double

37 , xr :: Double

38 , yb :: Double

39 , yt :: Double

40 , com :: CenterMass

41 }

42

43 instance NFData QuadInfo where

44 rnf (QuadInfo xl' xr' yb' yt' com') = rnf xl' `deepseq`

45 rnf xr' `deepseq`

46 rnf yb' `deepseq`

11

47 rnf yt' `deepseq`

48 rnf com'

49

50

51 instance Show QuadInfo where

52 show (QuadInfo xxl xxr yyb yyt com') = "QI[X:" ++ show xxl ++ "-" ++ show xxr ++ ",

Y:" ++ show yyb ++ "-" ++ show yyt ++ ", "++ show com' ++ "]"↪→

53

54 instance Show Body where

55 show (Body m x y xVel' yVel' radius') = "body @ (" ++ show x ++ ", " ++ show y ++ ")

-> mass: " ++ show m ++ ", vel: (" ++ show xVel' ++ ", " ++ show yVel' ++ ")" ++

", radius: " ++ show radius'

↪→

↪→

56

57 data QuadTree = QuadTree QuadTree QuadTree QuadTree QuadTree QuadInfo

58 | QuadNode (Maybe Body) QuadInfo

59

60 instance NFData QuadTree where

61 rnf (QuadTree nw ne sw se qi) = rnf nw `deepseq` rnf ne `deepseq` rnf sw `deepseq`

rnf se `deepseq` rnf qi↪→

62 rnf (QuadNode (Just b) qi) = rnf b `deepseq` rnf qi

63 rnf (QuadNode Nothing qi) = rnf qi

64

65 getCOMX :: QuadTree -> Double

66 getCOMX (QuadTree _ _ _ _ qi) = cx . com $ qi

67 getCOMX (QuadNode _ qi) = cx . com $ qi

68

69 getCOMY :: QuadTree -> Double

70 getCOMY (QuadTree _ _ _ _ qi) = cy . com $ qi

71 getCOMY (QuadNode _ qi) = cy . com $ qi

72

73 getCOMM :: QuadTree -> Double

74 getCOMM (QuadTree _ _ _ _ qi) = cMass . com $ qi

75 getCOMM (QuadNode _ qi) = cMass . com $ qi

76

77 toList :: QuadTree -> [Body]

78 toList (QuadNode Nothing _) = []

79 toList (QuadNode (Just b) _) = [b]

80 toList (QuadTree nw ne sw se _) = toList nw ++ toList ne ++ toList sw ++ toList se

81

82 squareBounds :: QuadInfo -> [Body] -> (Double, Double)

83 squareBounds qi bs = (minNum, maxNum)

84 where xl' = min (xl qi) (minimum $ map xCord bs)

85 xr' = max (xr qi) (maximum $ map xCord bs)

86 yb' = min (yb qi) (minimum $ map yCord bs)

87 yt' = max (yt qi) (maximum $ map yCord bs)

88 minNum = min xl' yb' -- ensure we always have a square

89 maxNum = max xr' yt'

90

91

92 fromList :: [Body] -> QuadInfo -> QuadTree

93 fromList bs qi

94 | null bs = emptyQTree (xl qi) (xr qi) (yb qi) (yt qi)

95 | otherwise = foldl (flip insert) empty bs

96 where empty = emptyQTree minNum maxNum minNum maxNum -- Dynamically calculate bounds

of new Quadtree↪→

97 (minNum, maxNum) = squareBounds qi bs

98

12

99 getInfo :: QuadTree -> QuadInfo

100 getInfo (QuadTree _ _ _ _ qi) = qi

101 getInfo (QuadNode _ qi) = qi

102

103 fromListPar :: [Body] -> QuadInfo -> QuadTree

104 fromListPar bs qi = QuadTree nw' ne' sw' se' qi

105 where (QuadTree nw ne sw se _) = emptyQTree minNum maxNum minNum maxNum --

Dynamically calculate bounds of new Quadtree↪→

106 (minNum, maxNum) = squareBounds qi bs

107 makeTreeForQuad quad = (flip fromList (getInfo quad) . filter (inQuad quad)) bs

108 (nw', ne',

109 sw', se') = runEval $ do parNW <- rparWith rdeepseq (makeTreeForQuad nw)

110 parNE <- rparWith rdeepseq (makeTreeForQuad ne)

111 parSW <- rparWith rdeepseq (makeTreeForQuad sw)

112 parSE <- rparWith rdeepseq (makeTreeForQuad se)

113 return (parNW, parNE, parSW, parSE)

114

115 emptyQNode :: Double -> Double -> Double -> Double -> QuadTree

116 emptyQNode xl' xr' yb' yt' = QuadNode Nothing (QuadInfo xl' xr' yb' yt' (CenterMass 0 0

0))↪→

117

118 emptyQTree :: Double -> Double -> Double -> Double -> QuadTree

119 emptyQTree xl' xr' yb' yt' = QuadTree nw ne sw se (QuadInfo xl' xr' yb' yt' (CenterMass 0

0 0))↪→

120 where xm = (xr' + xl') / 2

121 ym = (yt' + yb') / 2

122 nw = emptyQNode xl' xm ym yt'

123 ne = emptyQNode xm xr' ym yt'

124 sw = emptyQNode xl' xm yb' ym

125 se = emptyQNode xm xr' yb' ym

126

127 mapQuads :: (QuadTree -> a) -> QuadTree -> [a]

128 mapQuads f qn@(QuadNode _ _) = [f qn]

129 mapQuads f (QuadTree nw ne sw se _) = [f nw, f ne, f sw, f se]

130

131 foldQuads :: (QuadTree -> a -> a) -> a -> QuadTree -> a

132 foldQuads f z qn@(QuadNode _ _) = f qn z

133 foldQuads f z (QuadTree nw ne sw se _) = foldQuads f (foldQuads f (foldQuads f (foldQuads

f z se) sw) ne) nw↪→

134

135 inQuad :: QuadTree -> Body -> Bool

136 inQuad qt b = xl qi <= x && xr qi >= x && yt qi >= y && yb qi <= y

137 where x = xCord b

138 y = yCord b

139 qi = getInfo qt

140

141 combineBodies :: Body -> Body -> Body

142 combineBodies b1 b2 = b1 {mass = mass b1 + mass b2, xVel = xVel b1 + xVel b2, yVel = yVel

b1 + yVel b2}↪→

143

144 insert :: Body -> QuadTree -> QuadTree

145 insert b (QuadNode Nothing qi) = QuadNode (Just b) qi

146 insert b2 (QuadNode (Just b1) qi)

147 | (xCord b1 == xCord b2) && (yCord b1 == yCord b2) = QuadNode (Just $ combineBodies b1

b2) qi↪→

148 | otherwise = insert b2 $ insert b1 $ emptyQTree (xl qi) (xr qi) (yb qi) (yt qi)

149 insert b (QuadTree nw ne sw se qi)

13

150 | inQuad nw b = QuadTree (insert b nw) ne sw se qi

151 | inQuad ne b = QuadTree nw (insert b ne) sw se qi

152 | inQuad sw b = QuadTree nw ne (insert b sw) se qi

153 | inQuad se b = QuadTree nw ne sw (insert b se) qi

154 | otherwise = error "Couldn't find QuadTree to insert body"

155

156 traversePrint :: QuadTree -> Int -> String

157 traversePrint n@(QuadNode _ _) _ = "_ " ++ show n

158 traversePrint qt@(QuadTree _ _ _ _ qi) lvl = concat $ prInfo : branches

159 where branches = mapQuads (\q -> "\n" ++ replicate lvl '-' ++ traversePrint q (lvl +

1)) qt↪→

160 prInfo = (if lvl /= 0 then "_ " else "") ++ show qi

161

162 instance Show QuadTree where

163 show (QuadNode b qi) = show b ++ " " ++ show qi

164 show qt = traversePrint qt 0

1 {- Physics.hs: Logic for calculating force and movement -}

2 module Physics where

3 import QuadTree

4

5 thetaThreshold :: Double

6 thetaThreshold = 1

7

8 g :: Double

9 g = 50

10

11 density :: Double

12 density = 1/10 -- Object of mass 10 is radius 100, in mass / radius

13

14 combineBodies :: Body -> Body -> Body

15 combineBodies b1 b2 = b1 {mass = mass b1 + mass b2, xVel = xVel b1 + xVel b2, yVel = yVel

b1 + yVel b2}↪→

16

17 calcCOM :: QuadTree -> QuadTree

18 calcCOM (QuadNode Nothing qi) = QuadNode Nothing qi

19 calcCOM (QuadNode (Just b) qi) = QuadNode (Just b) (qi {com = CenterMass (mass b) (xCord

b) (yCord b)})↪→

20 calcCOM qt@(QuadTree _ _ _ _ qi) = QuadTree nw' ne' sw' se' (qi {com = CenterMass totMass

newX newY})↪→

21 where qs@[nw', ne', sw', se'] = mapQuads calcCOM qt

22 totMass = foldr (\q tm -> tm + getCOMM q) 0 qs

23 newX = foldr (\q wx -> wx + getCOMM q * getCOMX q) 0 qs / totMass

24 newY = foldr (\q wy -> wy + getCOMM q * getCOMY q) 0 qs / totMass

25

26 approximateForce :: QuadTree -> Body -> Double -> Body -- Run Barnes Hut

27 approximateForce (QuadNode Nothing _) b _ = b -- nothing to compute

28 approximateForce (QuadNode (Just b1) _) b dt = if b == b1 then b else updateVelocity b b1

dt↪→

29 approximateForce qt@(QuadTree _ _ _ _ qi) b dt

30 | theta < thetaThreshold = updateVelocity b referenceMass dt-- Treat this quadrant as

a single mass↪→

31 | otherwise = foldQuads (\qt' b' -> approximateForce qt' b' dt) b qt

32 where (xDiff, yDiff) = (xCord b - getCOMX qt, yCord b - getCOMY qt)

33 distance = xDiff * xDiff + yDiff * yDiff

34 theta = (xr qi - xl qi) / sqrt distance

14

35 referenceMass = Body (getCOMM qt) (getCOMX qt) (getCOMY qt) 0 0 0 -- Consider the

COM a body for calculation↪→

36

37 doTimeStep :: Double -> Body -> Body

38 doTimeStep timeStep b = b {xCord = xCord b + xVel b * timeStep, yCord = yCord b + yVel b

* timeStep}↪→

39

40 updateVelocity :: Body -> Body -> Double -> Body

41 updateVelocity bodyToUpdate otherBody dt

42 | bodyToUpdate == otherBody = bodyToUpdate

43 | otherwise = bodyToUpdate {xVel = xVel bodyToUpdate - xVelChange * dt, yVel = yVel

bodyToUpdate - yVelChange * dt}↪→

44 where (xDiff, yDiff) = (xCord bodyToUpdate - xCord otherBody, yCord bodyToUpdate -

yCord otherBody)↪→

45 distance = xDiff * xDiff + yDiff * yDiff

46 angleToBody = atan2 yDiff xDiff

47 xVelChange = g * cos angleToBody * (mass otherBody / distance)

48 yVelChange = g * sin angleToBody * (mass otherBody / distance)

49

50 circularVelocity :: Double -> Double -> Double

51 circularVelocity massSun radius' = sqrt (g * massSun / radius')

52

53 generateOrbiter :: Body -> Double -> Double -> Body

54 generateOrbiter sun radius' mass' = Body mass' (xCord sun + radius') (yCord sun) (xVel

sun) (yVel sun + velocity) (mass' / density)-- Start at same y level↪→

55 where velocity = circularVelocity (mass sun) radius'

56

57 generateOrbiterAngle :: Body -> Double -> Double -> Double -> Body

58 generateOrbiterAngle sun radius' mass' angle = Body mass' (xPos) (yPos) (xVel') (yVel')

(mass' / density)-- Start at same y level↪→

59 where velocity = circularVelocity (mass sun) radius'

60 xVel' = xVel sun + velocity * sin (angle + pi / 2 :: Double)

61 yVel' = yVel sun + velocity * cos (angle + pi / 2 :: Double)

62 xPos = xCord sun + (sin angle) * radius'

63 yPos = xCord sun + (cos angle) * radius'

1 {- Visualize.hs: Interface with gloss library -}

2 module Visualize where

3

4 import Graphics.Gloss

5 import QuadTree

6 import GHC.Float

7

8 drawBody :: Body -> Picture

9 drawBody b = Color white $ Translate x y (circleSolid (realToFrac $ radius b))

10 where x = realToFrac $ xCord b

11 y = realToFrac $ yCord b

12

13 drawQuadTree :: QuadTree -> [Picture] -> [Picture]

14 drawQuadTree (QuadNode Nothing qi) pics = drawBox qi : pics

15 drawQuadTree (QuadNode (Just b) qi) pics = drawBox qi : drawBody b : pics

16 drawQuadTree qt@(QuadTree _ _ _ _ qi) pics = drawBox qi : foldQuads drawQuadTree pics qt

++ pics↪→

17

18 drawBox :: QuadInfo -> Picture

15

19 drawBox qi = Color (greyN 0.5) $ Translate x y (rectangleWire (realToFrac (xr qi - xl

qi)) (realToFrac (yt qi - yb qi)))↪→

20 where x = realToFrac (xr qi + xl qi) / 2

21 y = realToFrac (yt qi + yb qi) / 2

22

23

24 runSimulation :: QuadTree -> (QuadTree -> Double -> QuadTree) -> IO ()

25 runSimulation qt updateFunc = simulate (InWindow "Barnes-Hut Simulation" (1500, 1500)

(10, 10))↪→

26 black 60

27 qt

28 (\ qt' -> pictures $ drawQuadTree qt' [])

29 (_ dt qt' -> updateFunc qt' (float2Double dt))

1 # package.yaml: Build configs

2 name: barnes-hut

3 version: 0.1.0.0

4 github: "hmontero1205/barnes-hut"

5 license: BSD3

6 author: "Hans Montero, Rhys Murray"

7 maintainer: "hjm2133@columbia.edu, ram2269@columbia.edu"

8 copyright: "2020 Nuss Tendie"

9

10 extra-source-files:

11 - README.md

12 - ChangeLog.md

13

14 description: Please see the README on GitHub at

<https://github.com/hmontero1205/barnes-hut#readme>↪→

15

16 dependencies:

17 - base >= 4.7 && < 5

18 - gloss

19 - parallel

20 - deepseq

21 - split

22 - random

23

24 library:

25 source-dirs: src

26

27 executables:

28 barnes-hut:

29 main: Main.hs

30 source-dirs: app

31 ghc-options:

32 - -Wall

33 - -O2

34 - -threaded

35 - -rtsopts

36 - -eventlog

37 dependencies:

38 - barnes-hut

39 - gloss

40

41 tests:

16

42 barnes-hut-test:

43 main: Spec.hs

44 source-dirs: test

45 ghc-options:

46 - -threaded

47 - -rtsopts

48 dependencies:

49 - barnes-hut

17

	n-body Problem
	Barnes-Hut Approximation
	Data Types
	Implementation
	Animation

	Parallelization
	Force Computation
	parMap and parBuf Strategies
	parListChunks and parBufChunks Strategies
	Analysis

	Parallel QuadTree Construction

	Conclusion
	Code Listing

