
Parallel Expectimax: A 2048 Solver

Gabriel Clinger | Matthew Ottomano

Abstract

This project focuses on the game 2048, a fun pastime that you can download on your phone.
Several implementations of the game have been implemented in different programming
languages, including Haskell, however not many parallel implementations of a solver for the
game have been implemented. We focus on parallelizing the minimax algorithm and running
metrics for performance.

Introduction

This project aims to test Haskell's parallel programming performance compared to its sequential
performance. To do so we took a familiar algorithm we have implemented in python, converted
it to haskell and added parallelism to it. We took a well known game; 2048 and used an
adversarial tree like search algorithm to win the game. The tree-like nature of the search
algorithm gave us an opportunity to parallelise the search and reduce the search time
significantly.

2048

2048 is a single player sliding block puzzle game in which the objective of the game is to slide
numbered tiles on a grid to combine them in order to generate a tile with the value of 2048, or
even higher.

The game is played on a 4x4 grid with numbered tiles that slide in one of four
directions where the tiles slide as far as possible in the chosen direction until

they are stopped by another tile or the edge, and if two of the same numbered
tiles collide, they merge into a tile with double the value. If a move causes three
consecutive tiles of the same value to slide together only two tiles will combine.
If all four spaces in a row or column are the same value the two first and two
last will combine. Every turn a new tile will randomly appear in an empty spot
on the board with a 90% chance of being a 2 and 10% chance of being a 4. In
this version the game is won once a tile reaches a value of 2048.

Minimax

Minimax is a kind of backtracking algorithm that is used in decision making and game theory to
find the optimal move for a player that assumed the opponent is playing optimally: that is that
while the maximizer will chose a move with the most utility, the minimizer/opponent will chose
the opposite, the move with the least amount of utility.
Each move is made essentially by anticipating
the future moves, with the assumption that the
opponent is making the optimal move to win the game.
Since 2048 has an element of chance to the game,
because the computer move is a randomly inserted tile,
it cannot be assumed that the opponent is acting
optimally.

Expectimax

Expectimax search algorithm is a game theory algorithm used to maximize
the expected utility instead. While minimax assumes that the
opponent plays optimally, expectimax doesn’t. Since in 2048
after each move a tile is placed randomly but with a 90% chance
of a 2 and 10% chance of a 4 so each move must be made by
taking an average of the anticipate expected utility, which is,
in this case, 0.9 times the utility of a move with a 2 tile
inserted + 0.1 times the utility of a move with
a 4 tile inserted.

Alpha Beta Pruning

Alpha beta pruning is a method of decreasing the number of nodes that are evaluated by the
minimax algorithm in its search tree. Alpha beta pruning decreases the branching factor thus
allowing for a faster and deeper search. Alpha beta
Pruning stops evaluating a move when
there a possibility for a move has been
found that is worse than a previously seen
move, in which case the move not longer
needs to be evaluated. When used with a
minimax like search algorithm alpha beta
pruning returns the same move but prunes
away branches that cannot influence the
final move

Alpha beta pruning alone decreased the running time from around 760 seconds to about 95s
second sequentially.

Heuristics

Heuristics are a technique used for problem solving more efficiently and quickly. The heuristics
we chose were inspired by a stanford research paper,
http://cs229.stanford.edu/proj2016/report/NieHouAn-AIPlays2048-report.pdf, which outlines a
number of heuristics. We focused on using four primary heuristics which we found to be most
useful in achieving a high score with a limited amount of depth search: Weight Matrix, Empty
tiles, Monotonicity, and Smoothness.

Weight Matrix

A weighted matrix is simply a grid with higher weighing tiles on one part of
the grid, giving more weight to some tiles and less to others. By multiplying
our game grid by a weighted matrix it results in giving grids with higher
valued tiles in the higher weighted area a much higher utility which results
with the algorithm shifting tiles and converging them to one corner of the
grid, a strategy which makes it more likely to reach higher valued tiles.

Empty Tiles

http://cs229.stanford.edu/proj2016/report/NieHouAn-AIPlays2048-report.pdf

A heuristic of availableCells or empty tiles simply counts the number of available or empty tiles
on the grid and multiplies that result by some value, giving more weight, and more utility to
grids with more empty tiles. This strategy increases the chance that when possible a merge
between tiles will be made and keeping the board unfilled allows for longer gameplay and more
chances of reaching a higher score.

Monotonicity

Monotonicity heuristic keeps the tiles in decreasing order by adding utility to grids with tiles in
decreasing order. This strategy helps make sure that tiles keep merging and that there are no
“isle” tiles keeping other tiles from merging.

Smoothness

Smoothness heuristic keeps tiles of similar value close to one another. Again, this strategy
increases chances that tiles merge.

Parallel Implementation

Tools used

The module that our parallel implementation uses is Control.Parallel.Strategies. The reason for
using this module is the useful rpar function which sparks its argument in parallel. A list of
functions used is below:

Naive Implementation

The first attempt we made was a naive injection of rpar into the existing code. We decided to use
rpar on every recursive step for the minimizer function. This led to really poor spark
management as seen below:

It is also important to note the extremely low total time. This run was an instance where our
solver failed very quickly; this means that a full run to 2048 using this implementation would
generate a nightmarish amount of sparks that are barely converted.

A Better Approach to Parallelizing

After our first iteration, we decided to sit down and understand this from a bigger picture. From a
fundamental standpoint, the solver has up to four moves to choose from at any turn. The main
goal is to get the utility for each move using minimax and then choosing the move with the
largest utility. As seen in class, to reduce the number of sparks generated from running fibonacci
in parallel, we stopped parallelizing at a certain depth. Due to the efficiency of alpha-beta
pruning, we decided that we only need to run rpar once on each of the resulting grids from the
four possible moves at every step. This looks like the diagram below:

This diagram shows that we run rpar on each of the different moves and then calculate the rest
sequentially. In the sequential version, these utilities were calculated one at a time, but this
implementation allows the solver to get the needed utilities simultaneously. Due to the limit we
put on parallelism, we hoped that far fewer sparks would be created and the
conversion-to-creation ratio was far greater.

We use parList to map rpar to a list which includes the function that starts the minimax algorithm
four times with each of the possible grids as input. The code is shown below:

As one may notice, the parUtility function returns an Eval [Integer], which we can’t work with
alone. Therefore, after finishing the computation to get the utilities, we simply use runEval to
turn the Eval [Integer] into a list of integers that we can use:

Results

Sequential Performance

Before adding alpha-beta pruning, we decided to see how our solver ran. When running the
solver with a depth of 6, it took on average 760 seconds to achieve a score of 2048.

After adding the alpha-beta pruning to our minimax implementation, the solver managed to
achieve a score of 2048 in 42 seconds on average. Admittedly, we probably could have stopped
here since our solver was able to achieve the meaning of life, the universe and everything,
however we decided to parallelize it anyway.

Parallel Performance

Using our multi-core parallel implementation, we received the numbers below:

The important metric to consider is the Time(s)/Moves. This is because due to the random
component of 2048, some runs may take more moves to reach 2048 than others. Therefore, the
more telling metric is how much time did the solver take per move, which is one iteration of the
game. As the table shows, we get a stark decrease from the sequential version to the parallel
version. The Time(s)/Moves metric then decreases slightly with each core added.

Another important observation is how our spark management is doing. Compared to our naive
implementation of parallelism, the number of sparks is far lower and the conversion-to-creation
rate is significantly higher.

We also analyzed the load balancing of using 4 cores with our parallel implementation using
ThreadScope and received a very balanced visualization, as seen below:

Conclusion

The utilization of Haskell’s parallelism drastically increased the performance of minimax with
alpha-beta pruning in the game of 2048. While the most dramatic difference in time was seen
when incorporating alpha-beta pruning into the minimax algorithm, we were able to more than
half the average sequential time of the solver using parallelism. This results in the ability to run
the solver at higher depths than can normally be achieved on the sequential version.

Future Work

The solver can be extended in multiple directions. One direction that can be iterated on is
figuring out the optimal depth to stop parallelizing. Our implementation stops at the first level,
simply calculating the utilities of the four available moves in parallel. This can be done at
multiple levels however which will result in faster performance. The questions to be answered is
how fast is this difference, how is spark management when increasing depth, and again, what is
the optimal depth to stop.

Another improvement to the solver is tuning the weights of the heuristics used in the solver. This
process was done by trial and error on our end, however this process can be automated by
running multiple solvers in parallel to figure out the best weights to use.
Code

import Prelude hiding (Left, Right)
--import Data.Char (toLower)

import Data.List
import System.IO
import System.Random
import Text.Printf
import Control.Parallel.Strategies

data Move = Up | Down | Left | Right
type Grid = [[Int]]

start :: IO Grid
start = do grid' <- addTile $ replicate 4 [0, 0, 0, 0]
 addTile grid'

merge :: [Int] -> [Int]
merge xs = merged ++ padding
 where padding = replicate (length xs - length merged) 0
 merged = combine $ filter (/= 0) xs
 combine (x:y:ys) | x == y = x * 2 : combine ys
 | otherwise = x : combine (y:ys)
 combine x = x

move :: Move -> Grid -> Grid
move Left = map merge
move Right = map (reverse . merge . reverse)
move Up = transpose . move Left . transpose
move Down = transpose . move Right . transpose

getZeroes :: Grid -> [(Int, Int)]
getZeroes grid = filter (\(row, col) -> (grid!!row)!!col == 0) coordinates
 where singleRow n = zip (replicate 4 n) [0..3]
 coordinates = concatMap singleRow [0..3]

setSquare :: Grid -> (Int, Int) -> Int -> Grid
setSquare grid (row, col) val = pre ++ [mid] ++ post
 where pre = take row grid
 mid = take col (grid!!row) ++ [val] ++ drop (col + 1) (grid!!row)
 post = drop (row + 1) grid

isMoveLeft :: Grid -> Bool

isMoveLeft grid = sum allChoices > 0
 where allChoices = map (length . getZeroes . flip move grid) directions
 directions = [Left, Right, Up, Down]

getChildren :: Grid -> [Grid]
getChildren grid = filter (\x -> x /= grid) [move d grid | d <- directions]
 where directions = [Left, Right, Up, Down]

printGrid :: Grid -> IO ()
printGrid grid = do
 putStrLn ""
 mapM_ (putStrLn . showRow) grid

showRow :: [Int] -> String
showRow = concatMap (printf "%5d")

check2048 :: Grid -> Bool
check2048 grid = [] /= filter (== 2048) (concat grid)

addTile :: Grid -> IO Grid
addTile grid = do
 let candidates = getZeroes grid
 pick <- choose candidates
 val <- choose [2,2,2,2,2,2,2,2,2,4]
 let new_grid = setSquare grid pick val
 return new_grid

choose :: [a] -> IO a
choose xs = do
 i <- randomRIO (0, length xs-1)
 return (xs !! i)

sumOfTiles :: Grid -> Integer
sumOfTiles grid = toInteger $ sum $ map sum grid

weightMatrix :: Grid -> Integer
weightMatrix grid = sumOfTiles $ zipWith (zipWith (*)) matrix grid

 --where matrix = [[1073741824, 268435456, 67108864,
16777216],[65536,262144,1048576,4194304],[16384,4096,1024,256],[1,4,16,64]]
 --where matrix = [[1073741824, 268435456, 67108864,
16777216],[4194304,1048576,262144,65536],[16384,4096,1024,256],[64,16,4,1]]
 --where matrix = [[7,6,5,4],[6,5,4,3],[5,4,3,2],[4,3,2,1]]
 where matrix = if maxTile grid <= 512 then [[21,8,3,3],[9,5,2],[4,3]] else
[[19,9,5,3],[8,4,2],[3]]
 --where matrix = [[26000,,22,20],[12,14,16,18],[10,8,6,4],[1,2,3,4]]

monotonicity :: Grid -> Int -> Integer
monotonicity [] _ = 0
monotonicity (x:xs) currentValue = fromIntegral (monotonicityHelper x currentValue) +
monotonicity xs currentValue

monotonicityHelper :: [Int] -> Int -> Int
monotonicityHelper [] _ = 0
monotonicityHelper (x:xs) currentValue
 | x < currentValue = 1 + monotonicityHelper xs x
 | otherwise = monotonicityHelper xs x

smoothness :: Grid -> Integer
smoothness [] = 0
smoothness (x:xs) = smoothnessHelper x + smoothness xs

smoothnessHelper :: [Int] -> Integer
smoothnessHelper [] = 0
smoothnessHelper (a:b:c:d:_) = fromIntegral $ ((abs (a - b)) + (abs (b - c)) + (abs (c - d))) * 5
smoothnessHelper [_] = error "wrong number of elements"
smoothnessHelper [_,_] = error "wrong number of elements"
smoothnessHelper [_,_,_] = error "wrong number of elements"

availableCells :: Grid -> Integer
availableCells grid = toInteger $ sum $ map zeros grid
 where zeros l = length $ filter (\x -> x == 0) l

weWon :: Grid -> Integer
weWon grid
 | maxTile grid == 2048 = 999999

 | otherwise = 0

utility :: Grid -> Integer
utility grid = weightMatrix grid + (100 * availableCells grid) + (15 * monotonicity grid 9999) +
(15 * monotonicity (transpose grid) 9999) - (smoothness grid) - (smoothness (transpose grid)) +
weWon grid
--utility grid = fromIntegral $ (3 * monotonicity grid 9999) + (3 * monotonicity (transpose grid)
9999) - (smoothness grid) - (smoothness (transpose grid)) + (maxTile grid) + (fromIntegral $ 3 *
availableCells grid) + (fromIntegral $ sumOfTiles grid)

parMaximize :: Grid -> Integer -> Integer -> Int -> Grid
parMaximize grid a b maxDepth
 | maxDepth == 0 || not (isMoveLeft grid) = grid
 | otherwise = chooseGrid (chooseGridIndex utilities maximumm 0) (grids)
 where utilities = runEval (parUtility (grids) a b maxDepth)
 maximumm = maxU utilities
 grids = getChildren grid

parUtility :: [Grid] -> Integer -> Integer -> Int -> Eval [Integer]
parUtility grids a b maxDepth = parList rpar [chance c a b (maxDepth - 1) | c <- grids]

maxU :: [Integer] -> Integer
maxU utilities = maximum utilities

chooseGridIndex :: [Integer] -> Integer -> Int -> Int
chooseGridIndex [] _ _ = error "wrong number of elements"
chooseGridIndex (x:xs) maxUtil starter
 | x == maxUtil = starter
 | otherwise = chooseGridIndex xs maxUtil (starter + 1)

chooseGrid :: Int -> [Grid] -> Grid
chooseGrid index grids = grids !! index

maximize :: Grid -> Integer -> Integer -> Int -> (Grid, Integer)
maximize grid a b maxDepth
 | maxDepth == 0 || not (isMoveLeft grid) = (grid, utility grid)
 | otherwise = maxHelper (getChildren grid) grid a b (-999999999999) maxDepth

maxHelper :: [Grid] -> Grid -> Integer -> Integer -> Integer -> Int -> (Grid, Integer)
maxHelper [] maxChild _ _ maxUtility _ = (maxChild, maxUtility)
maxHelper (c:children) maxChild a b maxUtility maxDepth
 | util > maxUtility = maxHelper (c:children) c a b util maxDepth
 | maxUtility >= b = maxHelper children maxChild a b maxUtility maxDepth
 | maxUtility > a = maxHelper (c:children) maxChild maxUtility b maxUtility maxDepth
 | otherwise = maxHelper children maxChild a b maxUtility maxDepth
 --where utility = runEval $ rpar (chance c a b (maxDepth - 1))
 where util = chance c a b (maxDepth - 1)

chance :: Grid -> Integer -> Integer -> Int -> Integer
chance grid a b maxDepth
 | maxDepth == 0 = utility grid
 | otherwise = toInteger (round ((9/10) * (realToFrac (minimize grid a b 2 (maxDepth - 1))))) +
toInteger (round ((1/10) * (realToFrac (minimize grid a b 4 (maxDepth - 1)))))

minimize :: Grid -> Integer -> Integer -> Int -> Int -> Integer
minimize grid a b tileVal maxDepth
 | maxDepth == 0 || availableCells grid == 0 = utility grid
 | otherwise = minHelper grid (getZeroes grid) tileVal a b 999999999999 maxDepth

minHelper :: Grid -> [(Int, Int)] -> Int -> Integer -> Integer -> Integer -> Int -> Integer
minHelper _ [] _ _ _ minUtility _ = minUtility
minHelper grid (c:cells) tVal a b minUtility maxDepth
 | util < minUtility = minHelper grid (c:cells) tVal a b util maxDepth
 | minUtility <= a = minHelper grid cells tVal a b minUtility maxDepth
 | minUtility < b = minHelper grid (c:cells) tVal a minUtility minUtility maxDepth
 | otherwise = minHelper grid cells tVal a b minUtility maxDepth
 where (_, util) = maximize (setSquare grid c tVal) a b (maxDepth - 1)

maxTile :: Grid -> Int
maxTile b = maximum $ map maximum b

gameLoop :: Grid -> Int -> IO ()
gameLoop grid movess
 | isMoveLeft grid = do
 printGrid grid

 if check2048 grid
 then print movess
 else do --new_grid <- newGrid grid
 let newGrid = parMaximize grid (-999999999999) 999999999999 6
 if grid /= newGrid
 then do new <- addTile newGrid
 gameLoop new (movess+1)
 else gameLoop grid (movess+1)
 | otherwise = do
 printGrid grid
 putStrLn "Game over"
 print movess

main :: IO ()
main = do
 hSetBuffering stdin NoBuffering
 grid <- start
 gameLoop grid 0

