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Abstract 
 
This project focuses on the game 2048, a fun pastime that you can download on your phone. 
Several implementations of the game have been implemented in different programming 
languages, including Haskell, however not many parallel implementations of a solver for the 
game have been implemented. We focus on parallelizing the minimax algorithm and running 
metrics for performance. 
 
Introduction 
 
This project aims to test Haskell's parallel programming performance compared to its sequential 
performance. To do so we took a familiar algorithm we have implemented in python, converted 
it to haskell and added parallelism to it. We took a well known game; 2048 and used an 
adversarial tree like search algorithm to win the game. The tree-like nature of the search 
algorithm gave us an opportunity to parallelise the search and reduce the search time 
significantly.  
 
2048 

 
 
2048 is a single player sliding block puzzle game in which the objective of the game is to slide 
numbered tiles on a grid to combine them in order to generate a tile with the value of 2048, or 
even higher.  

The game is played on a 4x4 grid with numbered tiles that slide in one of four  
directions where the tiles slide as far as possible in the chosen direction until  



they are stopped by another tile or the edge, and if two of the same numbered  
tiles collide, they merge into a tile with double the value. If a move causes three  
consecutive tiles of the same value to slide together only two tiles will combine.  
If all four spaces in a row or column are the same value the two first and two  
last will combine. Every turn a new tile will randomly appear in an empty spot  
on the board with a 90% chance of being a 2 and 10% chance of being a 4. In  
this version the game is won once a tile reaches a value of 2048. 

 
Minimax 
 
Minimax is a kind of backtracking algorithm that is used in decision making and game theory to 
find the optimal move for a player that assumed the opponent is playing optimally: that is that 
while the maximizer will chose a move with the most utility, the minimizer/opponent will chose 
the opposite, the move with the least amount of utility.  
Each move is made essentially by anticipating 
the future moves, with the assumption that the 
opponent is making the optimal move to win the game. 
Since 2048 has an element of chance to the game, 
because the computer move is a randomly inserted tile, 
it cannot be assumed that the opponent is acting 
optimally.  

 

Expectimax 
 
Expectimax search algorithm is a game theory algorithm used to maximize  
the expected utility instead. While minimax assumes that the 
opponent plays optimally, expectimax doesn’t. Since in 2048  
after each move a tile is placed randomly but with a 90% chance  
of a 2 and 10% chance of a 4 so each move must be made by  
taking an average of the anticipate expected utility, which is,  
in this case, 0.9 times the utility of a move  with a 2 tile  
inserted + 0.1 times the utility of a move with  
a 4 tile inserted.  

 

Alpha Beta Pruning 



 
Alpha beta pruning is a method of decreasing the number of nodes that are evaluated by the 
minimax algorithm in its search tree. Alpha beta pruning decreases the branching factor thus 
allowing for a faster and deeper search. Alpha beta  
Pruning stops evaluating a move when 
there a possibility for a move has been 
found that is worse than a previously seen 
move, in which case the move not longer 
needs to be evaluated. When used with a 
minimax like search algorithm alpha beta 
pruning returns the same move but prunes 
away branches that cannot influence the 
final move 

Alpha beta pruning alone decreased the running time from around 760 seconds to about 95s 
second sequentially. 

 
Heuristics 
 
Heuristics are a technique used for problem solving more efficiently and quickly. The heuristics 
we chose were inspired by a stanford research paper, 
http://cs229.stanford.edu/proj2016/report/NieHouAn-AIPlays2048-report.pdf​, ​which outlines a 
number of heuristics. We focused on using four primary heuristics which we found to be most 
useful in achieving a high score with a limited amount of depth search: Weight Matrix, Empty 
tiles, Monotonicity, and Smoothness. 

 
Weight Matrix 
 
A weighted matrix is simply a grid with higher weighing tiles on one part of 
the grid, giving more weight to some tiles and less to others. By multiplying 
our game grid by a weighted matrix it results in giving grids with higher 
valued tiles in the higher weighted area a much higher utility which results 
with the algorithm shifting tiles and converging them to one corner of the 
grid, a strategy which makes it more likely to reach higher valued tiles. 
 
Empty Tiles 
 

http://cs229.stanford.edu/proj2016/report/NieHouAn-AIPlays2048-report.pdf


A heuristic of availableCells or empty tiles simply counts the number of available or empty tiles 
on the grid and multiplies that result by some value, giving more weight, and more utility to 
grids with more empty tiles. This strategy increases the chance that when possible a merge 
between tiles will be made and keeping the board unfilled allows for longer gameplay and more 
chances of reaching a higher score. 

 
Monotonicity  
 
Monotonicity heuristic keeps the tiles in decreasing order by adding utility to grids with tiles in 
decreasing order. This strategy helps make sure that tiles keep merging and that there are no 
“isle” tiles keeping other tiles from merging.  
 
Smoothness 
 
Smoothness heuristic keeps tiles of similar value close to one another. Again, this strategy 
increases chances that tiles merge. 
 
 
Parallel Implementation 
 
Tools used 
 
The module that our parallel implementation uses is Control.Parallel.Strategies. The reason for 
using this module is the useful rpar function which sparks its argument in parallel. A list of 
functions used is below: 
 

 
 



Naive Implementation 
 
The first attempt we made was a naive injection of rpar into the existing code. We decided to use 
rpar on every recursive step for the minimizer function. This led to really poor spark 
management as seen below: 
 

 
 
It is also important to note the extremely low total time. This run was an instance where our 
solver failed very quickly; this means that a full run to 2048 using this implementation would 
generate a nightmarish amount of sparks that are barely converted.  
 
A Better Approach to Parallelizing 
 
After our first iteration, we decided to sit down and understand this from a bigger picture. From a 
fundamental standpoint, the solver has up to four moves to choose from at any turn. The main 
goal is to get the utility for each move using minimax and then choosing the move with the 
largest utility. As seen in class, to reduce the number of sparks generated from running fibonacci 
in parallel, we stopped parallelizing at a certain depth. Due to the efficiency of alpha-beta 
pruning, we decided that we only need to run rpar once on each of the resulting grids from the 
four possible moves at every step. This looks like the diagram below: 
 



 
This diagram shows that we run rpar on each of the different moves and then calculate the rest 
sequentially. In the sequential version, these utilities were calculated one at a time, but this 
implementation allows the solver to get the needed utilities simultaneously. Due to the limit we 
put on parallelism, we hoped that far fewer sparks would be created and the 
conversion-to-creation ratio was far greater. 
 
We use parList to map rpar to a list which includes the function that starts the minimax algorithm 
four times with each of the possible grids as input. The code is shown below: 
 

 
 
As one may notice, the parUtility function returns an Eval [Integer], which we can’t work with 
alone. Therefore, after finishing the computation to get the utilities, we simply use runEval to 
turn the Eval [Integer] into a list of integers that we can use: 
 

 
 
Results 
 
Sequential Performance 
 
Before adding alpha-beta pruning, we decided to see how our solver ran. When running the 
solver with a depth of 6, it took on average 760 seconds to achieve a score of 2048. 



 
After adding the alpha-beta pruning to our minimax implementation, the solver managed to 
achieve a score of 2048 in ​42​ seconds on average. Admittedly, we probably could have stopped 
here since our solver was able to achieve the meaning of life, the universe and everything, 
however we decided to parallelize it anyway. 
 
Parallel Performance 
 
Using our multi-core parallel implementation, we received the numbers below: 
 

 
 
The important metric to consider is the Time(s)/Moves. This is because due to the random 
component of 2048, some runs may take more moves to reach 2048 than others. Therefore, the 
more telling metric is how much time did the solver take per move, which is one iteration of the 
game. As the table shows, we get a stark decrease from the sequential version to the parallel 
version. The Time(s)/Moves metric then decreases slightly with each core added.  
 
Another important observation is how our spark management is doing. Compared to our naive 
implementation of parallelism, the number of sparks is far lower and the conversion-to-creation 
rate is significantly higher.  
 
We also analyzed the load balancing of using 4 cores with our parallel implementation using 
ThreadScope and received a very balanced visualization, as seen below:  
 



 
 
Conclusion 
 
The utilization of Haskell’s parallelism drastically increased the performance of minimax with 
alpha-beta pruning in the game of 2048. While the most dramatic difference in time was seen 
when incorporating alpha-beta pruning into the minimax algorithm, we were able to more than 
half the average sequential time of the solver using parallelism. This results in the ability to run 
the solver at higher depths than can normally be achieved on the sequential version. 
 
Future Work 
 
The solver can be extended in multiple directions. One direction that can be iterated on is 
figuring out the optimal depth to stop parallelizing. Our implementation stops at the first level, 
simply calculating the utilities of the four available moves in parallel. This can be done at 
multiple levels however which will result in faster performance. The questions to be answered is 
how fast is this difference, how is spark management when increasing depth, and again, what is 
the optimal depth to stop. 
 
Another improvement to the solver is tuning the weights of the heuristics used in the solver. This 
process was done by trial and error on our end, however this process can be automated by 
running multiple solvers in parallel to figure out the best weights to use. 
Code 
 
import Prelude hiding (Left, Right) 
--import Data.Char (toLower) 



import Data.List 
import System.IO 
import System.Random 
import Text.Printf 
import Control.Parallel.Strategies 
 
 
data Move = Up | Down | Left | Right 
type Grid = [[Int]] 
 
start :: IO Grid 
start = do grid'  <- addTile $ replicate 4 [0, 0, 0, 0] 
           addTile grid' 
 
merge :: [Int] -> [Int] 
merge xs = merged ++ padding 
    where padding = replicate (length xs - length merged) 0 
          merged  = combine $ filter (/= 0) xs 
          combine (x:y:ys) | x == y = x * 2 : combine ys 
                           | otherwise = x  : combine (y:ys) 
          combine x = x 
 
move :: Move -> Grid -> Grid 
move Left  = map merge 
move Right = map (reverse . merge . reverse) 
move Up    = transpose . move Left  . transpose 
move Down  = transpose . move Right . transpose 
 
getZeroes :: Grid -> [(Int, Int)] 
getZeroes grid = filter (\(row, col) -> (grid!!row)!!col == 0) coordinates 
    where singleRow n = zip (replicate 4 n) [0..3] 
          coordinates = concatMap singleRow [0..3] 
 
setSquare :: Grid -> (Int, Int) -> Int -> Grid 
setSquare grid (row, col) val = pre ++ [mid] ++ post 
    where pre  = take row grid 
          mid  = take col (grid!!row) ++ [val] ++ drop (col + 1) (grid!!row) 
          post = drop (row + 1) grid 
 
isMoveLeft :: Grid -> Bool 



isMoveLeft grid = sum allChoices > 0 
    where allChoices = map (length . getZeroes . flip move grid) directions 
          directions = [Left, Right, Up, Down] 
 
getChildren :: Grid -> [Grid] 
getChildren grid = filter (\x -> x /= grid) [move d grid | d <- directions] 
    where directions = [Left, Right, Up, Down] 
 
 
printGrid :: Grid -> IO () 
printGrid grid = do 
    putStrLn "" 
    mapM_ (putStrLn . showRow) grid 
 
showRow :: [Int] -> String 
showRow = concatMap (printf "%5d") 
 
check2048 :: Grid -> Bool 
check2048 grid = [] /= filter (== 2048) (concat grid) 
  
addTile :: Grid -> IO Grid 
addTile grid = do 
    let candidates = getZeroes grid 
    pick <- choose candidates 
    val  <- choose [2,2,2,2,2,2,2,2,2,4] 
    let new_grid = setSquare grid pick val 
    return new_grid 
 
choose :: [a] -> IO a 
choose xs = do 
    i <- randomRIO (0, length xs-1) 
    return (xs !! i) 
 
sumOfTiles :: Grid -> Integer 
sumOfTiles grid = toInteger $ sum $ map sum grid 
 
 
weightMatrix :: Grid -> Integer 
weightMatrix grid = sumOfTiles $ zipWith (zipWith (*)) matrix grid 



    --where matrix = [[1073741824, 268435456, 67108864, 
16777216],[65536,262144,1048576,4194304],[16384,4096,1024,256],[1,4,16,64]]  
    --where matrix = [[1073741824, 268435456, 67108864, 
16777216],[4194304,1048576,262144,65536],[16384,4096,1024,256],[64,16,4,1]] 
    --where matrix = [[7,6,5,4],[6,5,4,3],[5,4,3,2],[4,3,2,1]]  
    where matrix = if maxTile grid <= 512 then [[21,8,3,3],[9,5,2],[4,3]] else 
[[19,9,5,3],[8,4,2],[3]] 
    --where matrix = [[26000,,22,20],[12,14,16,18],[10,8,6,4],[1,2,3,4]] 
 
monotonicity :: Grid -> Int -> Integer 
monotonicity [] _ = 0 
monotonicity (x:xs) currentValue = fromIntegral (monotonicityHelper x currentValue) + 
monotonicity xs currentValue 
 
monotonicityHelper :: [Int] -> Int -> Int 
monotonicityHelper [] _ = 0 
monotonicityHelper (x:xs) currentValue  
                | x < currentValue = 1 + monotonicityHelper xs x  
                | otherwise = monotonicityHelper xs x  
 
smoothness :: Grid -> Integer 
smoothness [] = 0 
smoothness (x:xs) = smoothnessHelper x + smoothness xs  
 
smoothnessHelper :: [Int] -> Integer 
smoothnessHelper [] = 0 
smoothnessHelper (a:b:c:d:_) = fromIntegral $ ((abs (a - b)) + (abs (b - c)) + (abs (c - d))) * 5 
smoothnessHelper [_] = error "wrong number of elements" 
smoothnessHelper [_,_] = error "wrong number of elements" 
smoothnessHelper [_,_,_] = error "wrong number of elements" 
  
 
 
availableCells :: Grid -> Integer 
availableCells grid = toInteger $ sum $ map zeros grid 
    where zeros l = length $ filter (\x -> x == 0) l 
 
weWon :: Grid -> Integer 
weWon grid  
    | maxTile grid == 2048 = 999999 



    | otherwise = 0 
 
 
utility :: Grid -> Integer 
utility grid = weightMatrix grid + (100 * availableCells grid) + (15 * monotonicity grid 9999) + 
(15 * monotonicity (transpose grid) 9999) - (smoothness grid) - (smoothness (transpose grid)) + 
weWon grid 
--utility grid = fromIntegral $ (3 * monotonicity grid 9999) + (3 * monotonicity (transpose grid) 
9999) - (smoothness grid) - (smoothness (transpose grid)) + (maxTile grid) + (fromIntegral $ 3 * 
availableCells grid) + (fromIntegral $ sumOfTiles grid) 
 
 
parMaximize :: Grid -> Integer -> Integer -> Int -> Grid 
parMaximize grid a b maxDepth 
  | maxDepth == 0 || not (isMoveLeft grid) = grid 
  | otherwise = chooseGrid (chooseGridIndex utilities maximumm 0) (grids)  
    where utilities = runEval (parUtility (grids) a b maxDepth) 
          maximumm = maxU utilities  
          grids = getChildren grid 
 
 
parUtility :: [Grid] -> Integer -> Integer -> Int -> Eval [Integer]  
parUtility grids a b maxDepth = parList rpar [chance c a b (maxDepth - 1) | c <- grids] 
 
maxU :: [Integer] -> Integer 
maxU utilities = maximum utilities  
 
chooseGridIndex :: [Integer] -> Integer -> Int -> Int  
chooseGridIndex [] _ _ = error "wrong number of elements" 
chooseGridIndex (x:xs) maxUtil starter 
                | x == maxUtil = starter 
                | otherwise = chooseGridIndex xs maxUtil (starter + 1)  
 
chooseGrid :: Int -> [Grid] -> Grid  
chooseGrid index grids = grids !! index  
 
maximize :: Grid -> Integer -> Integer -> Int -> (Grid, Integer)  
maximize grid a b maxDepth 
  | maxDepth == 0 || not (isMoveLeft grid) = (grid, utility grid) 
  | otherwise = maxHelper (getChildren grid) grid a b (-999999999999) maxDepth 



 
maxHelper :: [Grid] -> Grid -> Integer -> Integer -> Integer -> Int -> (Grid, Integer) 
maxHelper [] maxChild _ _ maxUtility _ = (maxChild, maxUtility) 
maxHelper (c:children) maxChild a b maxUtility maxDepth 
  | util > maxUtility = maxHelper (c:children) c a b util maxDepth 
  | maxUtility >= b = maxHelper children maxChild a b maxUtility maxDepth 
  | maxUtility > a = maxHelper (c:children) maxChild maxUtility b maxUtility maxDepth 
  | otherwise = maxHelper children maxChild a b maxUtility maxDepth 
    --where utility = runEval $ rpar (chance c a b (maxDepth - 1)) 
    where util = chance c a b (maxDepth - 1) 
 
chance :: Grid -> Integer -> Integer -> Int -> Integer  
chance grid a b maxDepth  
  | maxDepth == 0 = utility grid 
  | otherwise = toInteger (round ((9/10) * (realToFrac (minimize grid a b 2 (maxDepth - 1))))) + 
toInteger (round ((1/10) * (realToFrac (minimize grid a b 4 (maxDepth - 1))))) 
 
minimize :: Grid -> Integer -> Integer -> Int -> Int -> Integer 
minimize grid a b tileVal maxDepth 
  | maxDepth == 0 || availableCells grid == 0 = utility grid 
  | otherwise = minHelper grid (getZeroes grid) tileVal a b 999999999999 maxDepth 
 
minHelper :: Grid -> [(Int, Int)] -> Int -> Integer -> Integer -> Integer -> Int -> Integer 
minHelper _ [] _ _ _ minUtility _ = minUtility 
minHelper grid (c:cells) tVal a b minUtility maxDepth 
  | util < minUtility = minHelper grid (c:cells) tVal a b util maxDepth 
  | minUtility <= a = minHelper grid cells tVal a b minUtility maxDepth 
  | minUtility < b = minHelper grid (c:cells) tVal a minUtility minUtility maxDepth 
  | otherwise = minHelper grid cells tVal a b minUtility maxDepth 
    where (_, util) = maximize (setSquare grid c tVal) a b (maxDepth - 1) 
 
 
maxTile :: Grid -> Int 
maxTile b = maximum $ map maximum b 
 
 
gameLoop :: Grid -> Int -> IO () 
gameLoop grid movess 
    | isMoveLeft grid = do 
        printGrid grid 



        if check2048 grid 
        then print movess 
        else do --new_grid <- newGrid grid 
                let newGrid = parMaximize grid (-999999999999) 999999999999 6 
                if grid /= newGrid 
                then do new <- addTile newGrid 
                        gameLoop new (movess+1) 
                else gameLoop grid (movess+1) 
    | otherwise = do 
        printGrid grid 
        putStrLn "Game over" 
        print movess 
 
main :: IO () 
main = do 
    hSetBuffering stdin NoBuffering 
    grid <- start 
    gameLoop grid 0 
 
 


