
Cellular Automaton (Life2) - Final Report
Eric Jing (epj2117)

Introduction
Cellular automata are a family of curious algorithms that have sparked interest in various fields
of computing and mathematics. Their ability to produce complex and unpredictable states from
comparatively simple rules makes them one of the best examples of emergent phenomena - the
observation that simple rules can give rise to phenomena much more intricate than their
simplicity would suggest.
One algorithm in particular has gained disproportionate notoriety: Conway’s Game of Life. John
Conway proposed a set of rules that are analogous to real world biology. From those rules
spring forth endless permutations of the state grid, with various creations featured on many odd
corners of the internet. The algorithm is even Turing complete: it can simulate a computer with
its rules, including the computer that is currently running it.

Algorithm
Given a 2D grid of cells that could either be “dead” or “alive”:

1. If a live cell has fewer than two neighbors, it dies the next turn, as if by loneliness.
2. If a live cell has more than three neighbors, it dies the next turn, as if by overcrowding.
3. If a dead cell has exactly three neighbors, it comes alive the next turn, af if through

reproduction.
There are many ways to handle edge cases. The way this implementation handles it is to have
the edges wrap around to the other side. Topologically, the grid is equivalent to a torus.

Haskell Implementation
To implement a parallel simulator in Haskell, the most obvious way to parallelize the algorithm is
to break the 2D grid up into smaller subgrids. These subgrids can then be operated upon in
parallel. The rules describe local behavior, and can easily be applied to every cell in a grid. The
first caveat is handling the edge cases. Cells at the edges of a subgrid would need to know
about neighbors in another subgrid. Therefore, every subgrid must be queried for its edges, in
order to provide its neighbors the necessary information to compute their edge cells.

To do this, each subgrid is represented by a vector of Int data types that can be 1 or 0, along
with metadata for rows and columns. These subgrids are stored in another vector, representing
the entire 2D grid. Every time the board is updated, new subgrids are created with values
obtained from previously-calculated subgrids, as well as the edges of their neighbors.

Parallelization is done through the use of Haskell constructs such as parTraversable to evaluate
the vector of subgrids in parallel. Every iteration, the main Haskell thread will create sparks for
every subgrid. Once the entire board is updated, another round of sparks will be generated to
compute the next updated state.

Results

The program was tested on a Macbook Pro, with a dual-core Intel i5 processor. The test input
was a 64*64 board of an r-pentomino, simulated 1000 times.

While the program produced the correct result in every case, there was no significant speed-up
observed.

Looking at the Threadscope measurements, almost all of the created sparks were
garbage-collected. In hindsight, this was normal. As only the final iteration was necessary for
the output, there is no need to keep the other 999 results. Because the main thread creates the
sparks for the rest of the threads, it performs the bulk of the work, while the other threads do
what they can with the work made available.

Several things could be causing this result. One of them, the hardware, was the most likely
culprit. If the two-thread test underperformed, it was easy to see why adding more threads
would not help improve the performance. Another cause could be that the program was not as
taxing on the processor as it is on the memory. Since each computation is essentially a lookup
of a cell and its neighbors, memory that is accessed has relatively few computations performed
upon it. If memory is indeed the bottleneck, then no amount of threading or sparking can
overcome the performance gap.

Conclusion
While Haskell can be very performant under the right circumstances, given the simple nature of
the computation performed it falls short of the anticipated performance gains that this algorithm
suggests. A potential solution, aside from upgrading hardware, would be to optimize the
algorithm further. Using knowledge of hardware features such as caching, the algorithm can be
moved to a more high-performance language (like C++), where the lack of a garbage collector
and manual memory management grants a massive performance boost. Each subgrid can be
positioned in memory so that the processor always has complete subgrids in the same are of
cache, to reduce main memory lookup to a minimum.

Program Listing

cell.hs
import qualified Data.Vector as BV
import qualified Data.Vector.Mutable as BMV

import qualified Data.Vector.Unboxed as V
import qualified Data.Vector.Unboxed.Mutable as MV
import Data.Bits
import Control.Monad.ST
import Control.DeepSeq
import qualified Control.Monad.Primitive as P

import Data.Char
import qualified System.Environment
import qualified System.Exit
import System.IO
import Control.Parallel
import Control.Parallel.Strategies
import Control.Monad (forM, forM_, guard)

data Grid = Grid {
 gData :: V.Vector Int,
 gRows :: Int,
 gCols :: Int
}
instance NFData Grid where
 rnf g = rnf (gData g) `seq` rnf (gRows g) `seq` rnf (gCols g)

data Edge = Edge {
 eUL :: Int,
 eUU :: [Int],
 eUR :: Int,
 eLL :: [Int],
 eRR :: [Int],
 eDL :: Int,
 eDD :: [Int],
 eDR :: Int
}

-- Gets edge info of grid
edgeOfGrid :: Grid -> Edge

edgeOfGrid g = Edge {
 eUL = gData g V.! coordsToIndex (gCols g) (0,0),

 eUU = [gData g V.! coordsToIndex (gCols g) (0,i)
 | i <- [0..(gCols g - 1)]],

 eUR = gData g V.! coordsToIndex (gCols g) (0,gCols g - 1),

 eLL = [gData g V.! coordsToIndex (gCols g) (i,0)
 | i <- [0..(gRows g - 1)]],

 eRR = [gData g V.! coordsToIndex (gCols g) (i,gCols g - 1)
 | i <- [0..(gRows g - 1)]],

 eDL = gData g V.! coordsToIndex (gCols g) (gRows g - 1,0),

 eDD = [gData g V.! coordsToIndex (gCols g) (gRows g - 1,i)
 | i <- [0..(gCols g - 1)]],

 eDR = gData g V.! coordsToIndex (gCols g) (gRows g - 1,gCols g - 1)
}

coordsToIndex :: Int -> (Int,Int) -> Int
coordsToIndex cols (r,c) = r*cols+c

coordRange :: [Int] -> [Int] -> [(Int,Int)]
coordRange rs cs = do
 r <- rs
 c <- cs
 return (r, c)

-- Simulates a grid, plus external edges
nextStep :: Grid -> Edge -> Grid
nextStep g e = g {gData = V.create nvec}
 where
 nvec :: ST s (MV.MVector s Int)
 nvec = do
 v <- MV.replicate (V.length $ gData g) 0
 --Handle corners
 MV.write v (coordsToIndex (gCols g) (0,0)) (eUL e)
 MV.write v (coordsToIndex (gCols g) (0,gCols g - 1)) (eUR e)
 MV.write v (coordsToIndex (gCols g) (gRows g - 1,0)) (eDL e)
 MV.write v (coordsToIndex (gCols g) (gRows g - 1,gCols g - 1)) (eDR e)
 --Handle edges

 mapM_ (\(i,elem) -> MV.modify v
 (+elem)
 (coordsToIndex (gCols g) (0, i)))
 (zip [0..gCols g - 1] (eUU e))
 mapM_ (\(i,elem) -> MV.modify v
 (+elem)
 (coordsToIndex (gCols g) (0, i)))
 (zip [1..gCols g - 1] (eUU e))
 mapM_ (\(i,elem) -> MV.modify v
 (+elem)
 (coordsToIndex (gCols g) (0, i)))
 (zip [0..gCols g - 2] (tail $ eUU e))

 mapM_ (\(i,elem) -> MV.modify v
 (+elem)
 (coordsToIndex (gCols g) (gRows g - 1, i)))
 (zip [0..gCols g - 1] (eDD e))
 mapM_ (\(i,elem) -> MV.modify v
 (+elem)
 (coordsToIndex (gCols g) (gRows g - 1, i)))
 (zip [1..gCols g - 1] (eDD e))
 mapM_ (\(i,elem) -> MV.modify v
 (+elem)
 (coordsToIndex (gCols g) (gRows g - 1, i)))
 (zip [0..gCols g - 2] (tail $ eDD e))

 mapM_ (\(i,elem) -> MV.modify v
 (+elem)
 (coordsToIndex (gCols g) (i, 0)))
 (zip [0..gRows g - 1] (eLL e))
 mapM_ (\(i,elem) -> MV.modify v
 (+elem)
 (coordsToIndex (gCols g) (i, 0)))
 (zip [1..gRows g - 1] (eLL e))
 mapM_ (\(i,elem) -> MV.modify v
 (+elem)
 (coordsToIndex (gCols g) (i, 0)))
 (zip [0..gRows g - 2] (tail $ eLL e))

 mapM_ (\(i,elem) -> MV.modify v
 (+elem)
 (coordsToIndex (gCols g) (i, gCols g - 1)))
 (zip [0..gRows g - 1] (eRR e))

 mapM_ (\(i,elem) -> MV.modify v
 (+elem)
 (coordsToIndex (gCols g) (i, gCols g - 1)))
 (zip [1..gRows g - 1] (eRR e))
 mapM_ (\(i,elem) -> MV.modify v
 (+elem)
 (coordsToIndex (gCols g) (i, gCols g - 1)))
 (zip [0..gRows g - 2] (tail $ eRR e))
 --Look at neighboring cells from all 8 dirs
 mapM_ (\(r,c) -> MV.modify v
 (+(gData g V.! (coordsToIndex (gCols g) (r, c))))
 (coordsToIndex (gCols g) (r+1, c+1)))
 (coordRange [0..(gRows g - 2)] [0..(gCols g - 2)])
 mapM_ (\(r,c) -> MV.modify v
 (+(gData g V.! (coordsToIndex (gCols g) (r, c))))
 (coordsToIndex (gCols g) (r, c+1)))
 (coordRange [0..(gRows g - 1)] [0..(gCols g - 2)])
 mapM_ (\(r,c) -> MV.modify v
 (+(gData g V.! (coordsToIndex (gCols g) (r, c))))
 (coordsToIndex (gCols g) (r-1, c+1)))
 (coordRange [1..(gRows g - 1)] [0..(gCols g - 2)])
 mapM_ (\(r,c) -> MV.modify v
 (+(gData g V.! (coordsToIndex (gCols g) (r, c))))
 (coordsToIndex (gCols g) (r+1, c)))
 (coordRange [0..(gRows g - 2)] [0..(gCols g - 1)])
 mapM_ (\(r,c) -> MV.modify v
 (+(gData g V.! (coordsToIndex (gCols g) (r, c))))
 (coordsToIndex (gCols g) (r-1, c)))
 (coordRange [1..(gRows g - 1)] [0..(gCols g - 1)])
 mapM_ (\(r,c) -> MV.modify v
 (+(gData g V.! (coordsToIndex (gCols g) (r, c))))
 (coordsToIndex (gCols g) (r+1, c-1)))
 (coordRange [0..(gRows g - 2)] [1..(gCols g - 1)])
 mapM_ (\(r,c) -> MV.modify v
 (+(gData g V.! (coordsToIndex (gCols g) (r, c))))
 (coordsToIndex (gCols g) (r, c-1)))
 (coordRange [0..(gRows g - 1)] [1..(gCols g - 1)])
 mapM_ (\(r,c) -> MV.modify v
 (+(gData g V.! (coordsToIndex (gCols g) (r, c))))
 (coordsToIndex (gCols g) (r-1, c-1)))
 (coordRange [1..(gRows g - 1)] [1..(gCols g - 1)])

 --Calculate final cell state from sum of neighbors
 mapM_ (\i -> MV.modify v

 (\s -> ((1-(gData g V.! i))
 .&. fromEnum (s == 3))
 .|. ((gData g V.! i)
 .&. fromEnum (s `shift` (-1) == 1)))
 i)
 [0..((V.length $ gData g)- 1)]

 return v

readGrid :: Handle -> IO Grid
readGrid h = do
 [rowstr,colstr] <- words <$> hGetLine h
 rows <- readIO rowstr
 cols <- readIO colstr
 cells <- map digitToInt
 <$> filter (\c -> c=='0'||c=='1')
 <$> hGetContents h
 return Grid{
 gRows = rows,
 gCols = cols,
 gData = V.fromList cells
 }

data MultiGrid = MultiGrid {
 mGrids :: BV.Vector Grid,
 mRows :: Int,
 mCols :: Int,
 mSubRows :: Int,
 mSubCols :: Int
}
instance NFData MultiGrid where
 rnf mg = rnf (mGrids mg) `seq`
 rnf (mRows mg) `seq`
 rnf (mCols mg) `seq`
 rnf (mSubCols mg) `seq`
 rnf (mSubCols mg)

subGridOffset x m si = x*si `div` m
coordToSubGrid x m i = (m-1)-((x-1-i)*m `div` x)

getCell :: MultiGrid -> (Int,Int) -> Int
getCell mg (r,c) = gData subg V.!
 coordsToIndex
 (gCols subg)

 (r-subGridOffset (mRows mg) (mSubRows mg) rd,
 c-subGridOffset (mCols mg) (mSubCols mg) cd)
 where rd = coordToSubGrid (mRows mg) (mSubRows mg) r
 cd = coordToSubGrid (mCols mg) (mSubCols mg) c
 subg = mGrids mg BV.!
 coordsToIndex (mSubCols mg) (rd, cd)

makeSubGrid :: Grid -> (Int,Int) -> (Int,Int) -> Grid
makeSubGrid g (rows, cols) (ro, co) = Grid{
 gData = V.generate (rows*cols)
 (\i -> let (ri,ci) = divMod i cols in
 gData g V.! coordsToIndex
 (gCols g)
 (ro + ri, co + ci)),
 gRows = rows,
 gCols = cols
}

subdivideGrid :: (Int,Int) -> Grid -> MultiGrid
subdivideGrid (mr,mc) g = MultiGrid{
 mGrids = BV.fromList $
 map (\(sr,sc) -> makeSubGrid g
 (sgor (sr+1) - sgor sr, sgoc (sc+1) - sgoc sc)
 (sgor sr,sgoc sc))
 (coordRange [0..mr-1] [0..mc-1]),

 mRows = gRows g,
 mCols = gCols g,
 mSubRows = mr,
 mSubCols = mc
 }
 where sgor = subGridOffset (gRows g) mr
 sgoc = subGridOffset (gCols g) mc
--Calculates one subgrid of new multigrid
nextStepMG :: MultiGrid -> (Int,Int) -> Grid
nextStepMG mg (r, c) = nextStep grid edge
 where grid = mGrids mg BV.! coordsToIndex (mSubCols mg) (r,c)
 edge = Edge{
 eUL = eDR $ edgeOfGrid $ (mGrids mg) BV.!
 coordsToIndex (mSubCols mg) (
 (r-1)`mod` mSubRows mg,

 (c-1)`mod` mSubCols mg
),
 eUU = eDD $ edgeOfGrid $ (mGrids mg) BV.!
 coordsToIndex (mSubCols mg) (
 (r-1)`mod` mSubRows mg,
 (c)`mod` mSubCols mg
),
 eUR = eDL $ edgeOfGrid $ (mGrids mg) BV.!
 coordsToIndex (mSubCols mg) (
 (r-1)`mod` mSubRows mg,
 (c+1)`mod` mSubCols mg
),
 eLL = eRR $ edgeOfGrid $ (mGrids mg) BV.!
 coordsToIndex (mSubCols mg) (
 (r)`mod` mSubRows mg,
 (c-1)`mod` mSubCols mg
),
 eRR = eLL $ edgeOfGrid $ (mGrids mg) BV.!
 coordsToIndex (mSubCols mg) (
 (r)`mod` mSubRows mg,
 (c+1)`mod` mSubCols mg
),
 eDL = eUR $ edgeOfGrid $ (mGrids mg) BV.!
 coordsToIndex (mSubCols mg) (
 (r+1)`mod` mSubRows mg,
 (c-1)`mod` mSubCols mg
),
 eDD = eUU $ edgeOfGrid $ (mGrids mg) BV.!
 coordsToIndex (mSubCols mg) (
 (r+1)`mod` mSubRows mg,
 (c)`mod` mSubCols mg
),
 eDR = eUL $ edgeOfGrid $ (mGrids mg) BV.!
 coordsToIndex (mSubCols mg) (
 (r+1)`mod` mSubRows mg,
 (c+1)`mod` mSubCols mg
)
 }

nextMultiGridV :: MultiGrid -> BV.Vector Grid
nextMultiGridV mg = runEval $ parTraversable rdeepseq $ BV.imap
 (\i g -> nextStepMG mg (i `divMod` mSubCols mg))

 (mGrids mg)

simulate :: Int -> MultiGrid -> MultiGrid
simulate 0 mg = mg
simulate i mg = nv `deepseq` simulate (i-1) newg
 where nv = nextMultiGridV mg
 newg = mg {mGrids = nv}

main :: IO ()
main = do
 args <- System.Environment.getArgs
 if (length args /= 1)
 then do
 System.Exit.die "Usage: cell <iterations>"
 else do

 iters <- readIO $ head args :: IO Int
 gridinit <- readGrid stdin
 let multigrid = subdivideGrid (r,c) gridinit
 where r = gRows gridinit `div` 16
 c = gCols gridinit `div` 16

 let mg = simulate iters multigrid

 hPutStr stdout $ show $ mRows mg
 hPutChar stdout ' '
 hPutStrLn stdout $ show $ mCols mg
 forM [0..mRows mg - 1] $ \r -> do
 forM [0..mCols mg - 1] $ \c -> do
 hPutChar stdout (intToDigit $ getCell mg (r,c))
 hPutChar stdout '\n'
 return ()

