
Cellular Automaton (Life2) - Final Report 
Eric Jing (epj2117) 

Introduction 
Cellular automata are a family of curious algorithms that have sparked interest in various fields 
of computing and mathematics. Their ability to produce complex and unpredictable states from 
comparatively simple rules makes them one of the best examples of emergent phenomena - the 
observation that simple rules can give rise to phenomena much more intricate than their 
simplicity would suggest. 
One algorithm in particular has gained disproportionate notoriety: Conway’s Game of Life. John 
Conway proposed a set of rules that are analogous to real world biology. From those rules 
spring forth endless permutations of the state grid, with various creations featured on many odd 
corners of the internet. The algorithm is even Turing complete: it can simulate a computer with 
its rules, including the computer that is currently running it. 
 

Algorithm 
Given a 2D grid of cells that could either be “dead” or “alive”: 

1. If a live cell has fewer than two neighbors, it dies the next turn, as if by loneliness. 
2. If a live cell has more than three neighbors, it dies the next turn, as if by overcrowding. 
3. If a dead cell has exactly three neighbors, it comes alive the next turn, af if through 

reproduction. 
There are many ways to handle edge cases. The way this implementation handles it is to have 
the edges wrap around to the other side. Topologically, the grid is equivalent to a torus. 

Haskell Implementation 
To implement a parallel simulator in Haskell, the most obvious way to parallelize the algorithm is 
to break the 2D grid up into smaller subgrids. These subgrids can then be operated upon in 
parallel. The rules describe local behavior, and can easily be applied to every cell in a grid. The 
first caveat is handling the edge cases. Cells at the edges of a subgrid would need to know 
about neighbors in another subgrid. Therefore, every subgrid must be queried for its edges, in 
order to provide its neighbors the necessary information to compute their edge cells.  
 
To do this, each subgrid is represented by a vector of Int data types that can be 1 or 0, along 
with metadata for rows and columns. These subgrids are stored in another vector, representing 
the entire 2D grid. Every time the board is updated, new subgrids are created with values 
obtained from previously-calculated subgrids, as well as the edges of their neighbors. 



 
Parallelization is done through the use of Haskell constructs such as parTraversable to evaluate 
the vector of subgrids in parallel. Every iteration, the main Haskell thread will create sparks for 
every subgrid. Once the entire board is updated, another round of sparks will be generated to 
compute the next updated state. 
 

Results 

 
The program was tested on a Macbook Pro, with a dual-core Intel i5 processor. The test input 
was a 64*64 board of an r-pentomino, simulated 1000 times.  
 



 
 
While the program produced the correct result in every case, there was no significant speed-up 
observed.  

 
Looking at the Threadscope measurements, almost all of the created sparks were 
garbage-collected. In hindsight, this was normal. As only the final iteration was necessary for 
the output, there is no need to keep the other 999 results. Because the main thread creates the 
sparks for the rest of the threads, it performs the bulk of the work, while the other threads do 
what they can with the work made available. 



Several things could be causing this result. One of them, the hardware, was the most likely 
culprit. If the two-thread test underperformed, it was easy to see why adding more threads 
would not help improve the performance. Another cause could be that the program was not as 
taxing on the processor as it is on the memory. Since each computation is essentially a lookup 
of a cell and its neighbors, memory that is accessed has relatively few computations performed 
upon it. If memory is indeed the bottleneck, then no amount of threading or sparking can 
overcome the performance gap. 

Conclusion 
While Haskell can be very performant under the right circumstances, given the simple nature of 
the computation performed it falls short of the anticipated performance gains that this algorithm 
suggests. A potential solution, aside from upgrading hardware, would be to optimize the 
algorithm further. Using knowledge of hardware features such as caching, the algorithm can be 
moved to a more high-performance language (like C++), where the lack of a garbage collector 
and manual memory management grants a massive performance boost. Each subgrid can be 
positioned in memory so that the processor always has complete subgrids in the same are of 
cache, to reduce main memory lookup to a minimum. 
 
  



Program Listing 

cell.hs 
import qualified Data.Vector as BV 
import qualified Data.Vector.Mutable as BMV 
 
import qualified Data.Vector.Unboxed as V 
import qualified Data.Vector.Unboxed.Mutable as MV 
import Data.Bits 
import Control.Monad.ST 
import Control.DeepSeq 
import qualified Control.Monad.Primitive as P 
 
import Data.Char 
import qualified System.Environment 
import qualified System.Exit 
import System.IO 
import Control.Parallel 
import Control.Parallel.Strategies 
import Control.Monad (forM, forM_, guard) 
 
data Grid = Grid { 
   gData :: V.Vector Int, 
   gRows :: Int, 
   gCols :: Int 
} 
instance NFData Grid where 
   rnf g = rnf (gData g) `seq` rnf (gRows g) `seq` rnf (gCols g) 
 
data Edge = Edge { 
   eUL :: Int, 
   eUU :: [Int], 
   eUR :: Int, 
   eLL :: [Int], 
   eRR :: [Int], 
   eDL :: Int, 
   eDD :: [Int], 
   eDR :: Int 
} 
 
-- Gets edge info of grid 
edgeOfGrid :: Grid -> Edge 



edgeOfGrid g = Edge { 
   eUL = gData g V.! coordsToIndex (gCols g) (0,0), 
 
   eUU = [gData g V.! coordsToIndex (gCols g) (0,i) 
       | i <- [0..(gCols g - 1)]], 
 
   eUR = gData g V.! coordsToIndex (gCols g) (0,gCols g - 1), 
 
   eLL = [gData g V.! coordsToIndex (gCols g) (i,0) 
       | i <- [0..(gRows g - 1)]], 
 
   eRR = [gData g V.! coordsToIndex (gCols g) (i,gCols g - 1) 
       | i <- [0..(gRows g - 1)]], 
 
   eDL = gData g V.! coordsToIndex (gCols g) (gRows g - 1,0), 
 
   eDD = [gData g V.! coordsToIndex (gCols g) (gRows g - 1,i) 
       | i <- [0..(gCols g - 1)]], 
 
   eDR = gData g V.! coordsToIndex (gCols g) (gRows g - 1,gCols g - 1) 
} 
 
coordsToIndex :: Int -> (Int,Int) -> Int 
coordsToIndex cols (r,c) = r*cols+c 
 
coordRange :: [Int] -> [Int] -> [(Int,Int)] 
coordRange rs cs = do 
   r <- rs 
   c <- cs 
   return (r, c) 
 
-- Simulates a grid, plus external edges 
nextStep :: Grid -> Edge -> Grid 
nextStep g e = g {gData =  V.create nvec} 
   where 
   nvec :: ST s (MV.MVector s Int) 
   nvec = do 
       v <- MV.replicate (V.length $ gData g) 0 
       --Handle corners 
       MV.write v (coordsToIndex (gCols g) (0,0))                     (eUL e) 
       MV.write v (coordsToIndex (gCols g) (0,gCols g - 1))           (eUR e) 
       MV.write v (coordsToIndex (gCols g) (gRows g - 1,0))           (eDL e) 
       MV.write v (coordsToIndex (gCols g) (gRows g - 1,gCols g - 1)) (eDR e) 
       --Handle edges 



       mapM_ (\(i,elem) -> MV.modify v 
                           (+elem) 
                           (coordsToIndex (gCols g) (0, i))) 
           (zip [0..gCols g - 1] (eUU e)) 
       mapM_ (\(i,elem) -> MV.modify v 
                           (+elem) 
                           (coordsToIndex (gCols g) (0, i))) 
           (zip [1..gCols g - 1] (eUU e)) 
       mapM_ (\(i,elem) -> MV.modify v 
                           (+elem) 
                           (coordsToIndex (gCols g) (0, i))) 
           (zip [0..gCols g - 2] (tail $ eUU e)) 
 
       mapM_ (\(i,elem) -> MV.modify v 
                           (+elem) 
                           (coordsToIndex (gCols g) (gRows g - 1, i))) 
           (zip [0..gCols g - 1] (eDD e)) 
       mapM_ (\(i,elem) -> MV.modify v 
                           (+elem) 
                           (coordsToIndex (gCols g) (gRows g - 1, i))) 
           (zip [1..gCols g - 1] (eDD e)) 
       mapM_ (\(i,elem) -> MV.modify v 
                           (+elem) 
                           (coordsToIndex (gCols g) (gRows g - 1, i))) 
           (zip [0..gCols g - 2] (tail $ eDD e)) 
 
 
       mapM_ (\(i,elem) -> MV.modify v 
                           (+elem) 
                           (coordsToIndex (gCols g) (i, 0))) 
           (zip [0..gRows g - 1] (eLL e)) 
       mapM_ (\(i,elem) -> MV.modify v 
                           (+elem) 
                           (coordsToIndex (gCols g) (i, 0))) 
           (zip [1..gRows g - 1] (eLL e)) 
       mapM_ (\(i,elem) -> MV.modify v 
                           (+elem) 
                           (coordsToIndex (gCols g) (i, 0))) 
           (zip [0..gRows g - 2] (tail $ eLL e)) 
 
       mapM_ (\(i,elem) -> MV.modify v 
                           (+elem) 
                           (coordsToIndex (gCols g) (i, gCols g - 1))) 
           (zip [0..gRows g - 1] (eRR e)) 



       mapM_ (\(i,elem) -> MV.modify v 
                           (+elem) 
                           (coordsToIndex (gCols g) (i, gCols g - 1))) 
           (zip [1..gRows g - 1] (eRR e)) 
       mapM_ (\(i,elem) -> MV.modify v 
                           (+elem) 
                           (coordsToIndex (gCols g) (i, gCols g - 1))) 
           (zip [0..gRows g - 2] (tail $ eRR e)) 
       --Look at neighboring cells from all 8 dirs 
       mapM_ (\(r,c) -> MV.modify v 
                           (+(gData g V.! (coordsToIndex (gCols g) (r, c)))) 
                           (coordsToIndex (gCols g) (r+1, c+1) )) 
           (coordRange [0..(gRows g - 2)] [0..(gCols g - 2)]) 
       mapM_ (\(r,c) -> MV.modify v 
                           (+(gData g V.! (coordsToIndex (gCols g) (r, c)))) 
                           (coordsToIndex (gCols g) (r, c+1) )) 
           (coordRange [0..(gRows g - 1)] [0..(gCols g - 2)]) 
       mapM_ (\(r,c) -> MV.modify v 
                           (+(gData g V.! (coordsToIndex (gCols g) (r, c)))) 
                           (coordsToIndex (gCols g) (r-1, c+1) )) 
           (coordRange [1..(gRows g - 1)] [0..(gCols g - 2)]) 
       mapM_ (\(r,c) -> MV.modify v 
                           (+(gData g V.! (coordsToIndex (gCols g) (r, c)))) 
                           (coordsToIndex (gCols g) (r+1, c) )) 
           (coordRange [0..(gRows g - 2)] [0..(gCols g - 1)]) 
       mapM_ (\(r,c) -> MV.modify v 
                           (+(gData g V.! (coordsToIndex (gCols g) (r, c)))) 
                           (coordsToIndex (gCols g) (r-1, c) )) 
           (coordRange [1..(gRows g - 1)] [0..(gCols g - 1)]) 
       mapM_ (\(r,c) -> MV.modify v 
                           (+(gData g V.! (coordsToIndex (gCols g) (r, c)))) 
                           (coordsToIndex (gCols g) (r+1, c-1) )) 
           (coordRange [0..(gRows g - 2)] [1..(gCols g - 1)]) 
       mapM_ (\(r,c) -> MV.modify v 
                           (+(gData g V.! (coordsToIndex (gCols g) (r, c)))) 
                           (coordsToIndex (gCols g) (r, c-1) )) 
           (coordRange [0..(gRows g - 1)] [1..(gCols g - 1)]) 
       mapM_ (\(r,c) -> MV.modify v 
                           (+(gData g V.! (coordsToIndex (gCols g) (r, c)))) 
                           (coordsToIndex (gCols g) (r-1, c-1) )) 
           (coordRange [1..(gRows g - 1)] [1..(gCols g - 1)]) 
 
       --Calculate final cell state from sum of neighbors 
       mapM_ (\i -> MV.modify v 



                           (\s -> ((1-(gData g V.! i)) 
                               .&. fromEnum (s == 3)) 
                               .|. ((gData g V.! i) 
                               .&. fromEnum (s `shift` (-1) == 1))) 
                           i) 
           [0..((V.length $ gData g )- 1)] 
 
       return v 
 
readGrid :: Handle -> IO Grid 
readGrid h = do 
   [rowstr,colstr] <- words <$> hGetLine h 
   rows <- readIO rowstr 
   cols <- readIO colstr 
   cells <- map digitToInt 
               <$> filter (\c -> c=='0'||c=='1') 
               <$> hGetContents h 
   return Grid{ 
       gRows = rows, 
       gCols = cols, 
       gData = V.fromList cells 
   } 
 
data MultiGrid = MultiGrid { 
   mGrids :: BV.Vector Grid, 
   mRows :: Int, 
   mCols :: Int, 
   mSubRows :: Int, 
   mSubCols :: Int 
} 
instance NFData MultiGrid where 
   rnf mg = rnf (mGrids mg) `seq` 
           rnf (mRows mg) `seq` 
           rnf (mCols mg) `seq` 
           rnf (mSubCols mg) `seq` 
           rnf (mSubCols mg) 
 
subGridOffset x m si = x*si `div` m 
coordToSubGrid x m i = (m-1)-((x-1-i)*m `div` x) 
 
getCell :: MultiGrid -> (Int,Int) -> Int 
getCell mg (r,c) = gData subg V.! 
       coordsToIndex 
       (gCols subg) 



       (r-subGridOffset (mRows mg) (mSubRows mg) rd, 
        c-subGridOffset (mCols mg) (mSubCols mg) cd) 
   where rd = coordToSubGrid (mRows mg) (mSubRows mg) r 
         cd = coordToSubGrid (mCols mg) (mSubCols mg) c 
         subg = mGrids mg BV.! 
                coordsToIndex (mSubCols mg) (rd, cd) 
 
 
makeSubGrid :: Grid -> (Int,Int) -> (Int,Int) -> Grid 
makeSubGrid g (rows, cols) (ro, co) = Grid{ 
   gData = V.generate (rows*cols) 
       (\i -> let (ri,ci) = divMod i cols in 
           gData g V.! coordsToIndex 
               (gCols g) 
               (ro + ri, co + ci)), 
   gRows = rows, 
   gCols = cols  
} 
  
 
 
subdivideGrid :: (Int,Int) -> Grid -> MultiGrid 
subdivideGrid (mr,mc) g = MultiGrid{ 
   mGrids = BV.fromList $ 
           map (\(sr,sc) -> makeSubGrid g 
                   (sgor (sr+1) - sgor sr, sgoc (sc+1) - sgoc sc) 
                   (sgor sr,sgoc sc)) 
               (coordRange [0..mr-1] [0..mc-1]), 
  
   mRows = gRows g, 
   mCols = gCols g, 
   mSubRows = mr, 
   mSubCols = mc 
   } 
   where sgor = subGridOffset (gRows g) mr 
         sgoc = subGridOffset (gCols g) mc 
--Calculates one subgrid of new multigrid 
nextStepMG :: MultiGrid -> (Int,Int) -> Grid 
nextStepMG mg (r, c) = nextStep grid edge 
   where grid = mGrids mg BV.! coordsToIndex (mSubCols mg) (r,c) 
         edge = Edge{ 
       eUL = eDR $ edgeOfGrid $ (mGrids mg) BV.! 
                       coordsToIndex (mSubCols mg) ( 
                           (r-1)`mod` mSubRows mg, 



                           (c-1)`mod` mSubCols mg 
                           ), 
       eUU = eDD $ edgeOfGrid $ (mGrids mg) BV.! 
                       coordsToIndex (mSubCols mg) ( 
                           (r-1)`mod` mSubRows mg, 
                           (c)`mod` mSubCols mg 
                           ), 
       eUR = eDL $ edgeOfGrid $ (mGrids mg) BV.! 
                       coordsToIndex (mSubCols mg) ( 
                           (r-1)`mod` mSubRows mg, 
                           (c+1)`mod` mSubCols mg 
                           ), 
       eLL = eRR $ edgeOfGrid $ (mGrids mg) BV.! 
                       coordsToIndex (mSubCols mg) ( 
                           (r)`mod` mSubRows mg, 
                           (c-1)`mod` mSubCols mg 
                           ), 
       eRR = eLL $ edgeOfGrid $ (mGrids mg) BV.! 
                       coordsToIndex (mSubCols mg) ( 
                           (r)`mod` mSubRows mg, 
                           (c+1)`mod` mSubCols mg 
                           ), 
       eDL = eUR $ edgeOfGrid $ (mGrids mg) BV.! 
                       coordsToIndex (mSubCols mg) ( 
                           (r+1)`mod` mSubRows mg, 
                           (c-1)`mod` mSubCols mg 
                           ), 
       eDD = eUU $ edgeOfGrid $ (mGrids mg) BV.! 
                       coordsToIndex (mSubCols mg) ( 
                           (r+1)`mod` mSubRows mg, 
                           (c)`mod` mSubCols mg 
                           ), 
       eDR = eUL $ edgeOfGrid $ (mGrids mg) BV.! 
                       coordsToIndex (mSubCols mg) ( 
                           (r+1)`mod` mSubRows mg, 
                           (c+1)`mod` mSubCols mg 
                           ) 
   } 
 
 
 
nextMultiGridV :: MultiGrid -> BV.Vector Grid 
nextMultiGridV mg = runEval $ parTraversable rdeepseq $ BV.imap 
           (\i g -> nextStepMG mg (i `divMod` mSubCols mg)) 



           (mGrids mg) 
 
 
simulate :: Int -> MultiGrid -> MultiGrid 
simulate 0 mg = mg 
simulate i mg = nv `deepseq` simulate (i-1) newg 
   where nv = nextMultiGridV mg 
         newg = mg {mGrids = nv} 
 
main :: IO () 
main = do 
   args <- System.Environment.getArgs 
   if (length args /= 1) 
   then do 
       System.Exit.die "Usage: cell <iterations>" 
   else do 
 
       iters <- readIO $ head args :: IO Int 
       gridinit <- readGrid stdin 
       let multigrid = subdivideGrid (r,c) gridinit 
                       where r = gRows gridinit `div` 16 
                             c = gCols gridinit `div` 16 
 
       let mg = simulate iters multigrid 
 
       hPutStr stdout $ show $ mRows mg 
       hPutChar stdout ' ' 
       hPutStrLn stdout $ show $ mCols mg 
       forM [0..mRows mg - 1] $ \r -> do 
           forM [0..mCols mg - 1] $ \c -> do 
               hPutChar stdout (intToDigit $ getCell mg (r,c)) 
           hPutChar stdout '\n' 
       return () 
 
 


