
Crossword Generator and Solver

Gustaf Ahdritz (gwa2107) and Lucie le Blanc (ll3163)

23 December 2020

1 Introduction and Overview

This project creates crossword grids and solves them using a user-specified dic-
tionary. There are no clues or pre-filled letters involved: the solver produces all
valid solutions for the crossword based on its dimensions and layout.

2 Crossword generation

The crossword grid generation loosely follows the New York Times’ crossword
construction constraints1:

1. Crosswords must have black square symmetry, which typically comes in
the form of 180-degree rotational symmetry;

2. Crosswords must have all-over interlock;

3. Crosswords must not have unchecked squares (i.e., all letters must be
found in both Across and Down answers);

4. All answers must be at least 3 letters long;

5. Black squares should be used in moderation.

Constraints 1 and 3 are fully implemented: our crosswords have 180-degree
rotational symmetry, and all white squares are part of both horizontal and verti-
cal entries. We implemented constraints 4 and 5 by allowing our crossword gen-
erator to take in a user-supplied minimum word length and target black square
density. The rotational symmetry constraint made it very difficult to generate
crosswords with odd dimensions that didn’t violate the minimum word length,
so we set our crossword generator to only generate grids with even dimensions.
Our strategy also means that it is possible to generate grids with disconnected
regions, which breaks constraint 2. See below for one of the example grids we
generated, using a size of 10 and a black square density of 0.2.

1https://www.nytimes.com/puzzles/submissions/crossword

1

3 Solving strategy

The solving strategy for the crossword is straightforward. Using a user-supplied
dictionary, solution candidates are generated by filling each row of the grid with
possible word combinations. The validity of the candidate is checked column-
wise. Valid solutions are counted and printed.

Internally, grids are represented as two-dimensional lists of Square. Fill-
ing the crossword involves using list comprehensions to generate all possible
solutions for each word, row, and grid. Checking the crossword is done by
transposing each solution candidate and checking each column-turned-row to
make sure it only contains sequences of letters found in the dictionary.

4 Dictionary selection

In our initial attempts, the dictionary was stored as a Map Int (Set String),
where integer keys representing word length mapped to sets of words with that
number of letters. This was later changed to Map Int (Set [Square]), for
reasons discussed later in this report. The Map/Set combination was chosen for
efficient lookup.

The standard dictionary, located in /usr/share/dict/words, contains 102774
words. 63357 of these contain no special characters or captial letters, making
them usable in our crosswords. However, testing with a dictionary this large
proved to be too difficult – every machine we tested on, including a CLIC ma-
chine called Denhaag that boasts 125G of memory, failed to get past even the
first layer of candidates for a 4x4 grid before getting killed. The solutions it did
generate were often quite interesting (see Figure 1).

2

[a b l y] [a c i d] [a c t s]

[b e a u] [b o r e] [b o r e]

[e a r l] [e p i c] [e v e n]

[d u k e] [d e s k] [d e e d]

Figure 1: 4x4 puzzles generated using standard dictionary.

We instead chose to test smaller dictionaries of varying sizes. We started
with a dictionary of 10000 most common English words2, and trimmed the list
by taking only the first 1000, 500, 200 or 100 words for different tests.

In terms of crossword filling, this does not yield very interesting solutions.
Words like “the” and “that” appear often, but would not be not easy to write
creative clues for in a real puzzle. In the 1000-word case, filling a 4x4 grid gen-
erated 39 solutions, 37 of which were diagonally symmetrical (same words down
as across). The other 2 of were each others’ transposes, and missed diagonal
symmetry by only one letter.

[f a s t] [s a l e]

[a u t o] [a r e a]

[s t a y] [l e s s]

[t o y s] [e a s y]

Figure 2: 4x4 puzzles generated using 1000-common-word dictionary.

A more practical crossword generator would prefer words toward the middle
of the frequency-ordered word list. Ideally, crossword words should be known
to the average person but not necessarily used in the average sentence.

5 Initial Parallelization Attempts

Unless specified otherwise, all results in this section are from tests run using a
dictionary of 500 randomly selected common words on the following 4x4 cross-
word:

@

@

where underscores represent blank white spaces and ‘@’ represents a black
square. While the solver can handle larger puzzles than this, increasing the
size of the puzzle increases runtimes to the order of minutes rather than sec-
onds, prohibiting analysis of event logs in Threadscope. In the following subsec-
tions, we will apply various parallelization techniques to the following (slightly
squashed) code snippet:

2https://github.com/first20hours/google-10000-english

3

solve :: Map Int (Set String) -> [[Square]] -> [[[Square]]]

solve dict grid = do

let cands = map transpose (fill dict grid)

filter (check dict) cands

The third line yields a list of transposed candidate solutions. The fourth cross-
references them against the provided dictionary to verify that the columns con-
tain valid words.

All figures reported in this section represent an average of five trials on an
otherwise lightly loaded system.

Run sequentially, the program finds all valid solutions in 11.07 seconds.

5.1 Naive parBuffer

Our first attempt at parallelization was simply to parallelize the checking, ex-
pecting each thread to generate and then check their respective candidates in-
dependently, as follows:

solve :: Map Int (Set String) -> [[Square]] -> [[[Square]]]

solve dict grid = do

let cands = map transpose (fill dict grid)

filter (check dict) cands `using` parBuffer 100 rdeepseq

We use parBuffer here rather than parList in an attempt to mitigate the ex-
treme memory requirements of loading the whole list of candidates at once and
rdeepseq to force complete evaluation of each candidate in each thread. In prac-
tice, this implementation failed to parallelize at all. Zero threads are created,

Figure 3: The naive parBuffer implementation, -N2

and the overhead of adding a second core (on which some of the garbage collec-
tion seems to be running) slows the runtime to 14.44s. The Threadscope graph
is included in Figure 3. The culprit here appears to be filter. Unlike map, whose
weak head normal form representation would consist of a concatenation of one
thunk for applying the check to the first element of the list and then another
for completing the map operation on the remainder of the list, filter must eval-
uate each check on each element completely in order to determine the shape of

4

the list. This evaluation is performed sequentially before the parBuffer is even
properly applied, completely negating the benefits of having multiple cores.

5.2 Parallelizing candidate creation

We can sidestep this problem by shifting the parallelization directly onto the
code that generates candidate solutions:

solve :: Map Int (Set String) -> [[Square]] -> [[[Square]]]

solve dict grid = do

let l = fill dict grid

let cands = map transpose l `using` parBuffer 100 rdeepseq

filter (check dict) cands

The event log tells us that this change was successful: The workload here appears

Figure 4: parBuffer applied to candidates, -N2

extremely well-balanced. However, since about 67% of the 11694774 sparks
created either fizzle or are garbage collected, sequential garbage collection for
excess sparks short enough not to be visible at this scale in Threadscope drives
the runtime all the way up to 24.09s, most of which comes in the form of
additional garbage collection: we have achieved a “speedup” of 0.46x. This
indicates that the parallelization is far too granular, making it inefficient: each
spark is performing much less work per candidate grid than its computational
upkeep.

5.3 Parallelized candidate creation with chunking

Instead of parallelizing the output of map directly, we can group the candidates
into chunks of more reasonable sizes and then hand off each one to be computed
in parallel:

solve :: Map Int (Set String) -> [[Square]] -> [[[Square]]]

solve dict grid = do

let l = fill dict grid

let m = map transpose l

5

let chunk n = Data.List.Split.chunksOf n

let cands = chunk 10000 m `using` parBuffer 100 rdeepseq

filter (check dict) $ concat cands

Figure 5: parBuffer applied to candidates w/ chunking, -N4

On this test, we see a 100% conversion rate: of all of the 19617 sparks created,
none fail. The program spends much less time in the MUT phase of computation
as a result, but the costs of garbage collection gives us our slowest runtime so
far: 31.6s. Perturbing the chunk size to any of {10, 50, 100, 500, 1000, 10000,
50000, 100000} or changing the number of threads passed to parBuffer makes
matters worse.

5.4 Parallelizing candidate creation & filtering

Instead of filtering candidates in a separate second step, we can check them at
the same time:

solve :: Map Int (Set String) -> [[Square]] -> [[[Square]]]

solve dict grid = do

let l = fill dict grid

let m = map transpose l

let f = filter (check dict)

let chunk n = Data.List.Split.chunksOf n

let chunks = chunk 20000 m

concat $ map f chunks `using` parBuffer 100 rdeepseq

Note that we have heuristically increased the chunk size to 20000. This is
a substantial improvement over the previous attempt; run on 4 cores. The

6

conversion rate for the 981 sparks created is 100%. The MUT phase of the
program runs in just 3.57s. Unfortunately, the greater the number of cores,
the greater the time spent on garbage collection. The total runtime on 4 cores
is 16.36s—faster than in the previous section, but still not close to the 11.07s
achieved sequentially.

Figure 6: parBuffer applied to both candidate generation and filtering, -N4

Increasing or decreasing the core count, curiously enough, both have the
effect of increasing the absolute time spent on garbage collection. The problem
is only exacerbated on more complex tasks. When the size of the dictionary
is increased to 1000, the parallel -N4 solver spends about 85 seconds in MUT
and then another 285 in garbage collection, for a total of 370. The sequential
solver using the same dictionary spends 242 seconds in MUT and then 52 in
garbage collection, for a smaller total of 294.3. Figure 6 shows that, like Mar-
low’s “kmeans strat,” our program performs computations in staggered chunks
separated by periods of protracted garbage collection. Though we can decreas-
ing the width of each individual stop by decreasing the chunk size, the total
time spent on garbage collection remains fairly constant. Unlike Marlow, for
whom the suspected culprit was expensive I/O operations, we make a point of
not printing anything during execution. On the other hand, an inspection of
Threadscope’s “Raw events” tab reveals a number of heap overflows in individ-
ual threads, causing needless interruptions. We conclude that the issue must be
related to inefficient memory constructions in the crossword source.

6 Speedup Attempts

We made several changes to our program in an attempt to fix the very large
garbage collection overhead.

3Due to their length, the 1000-word trials were only run once each

7

6.1 List Comprehension

One of our attempts to improve our solution involved changing how we generated
solution candidates. Originally, we used a list comprehension and recursion
when filling the grid.

fill_crossword dict (l:ls) =

[line : rest | line <- fill_line dict l,

rest <- fill_crossword dict ls]

At the suggestion of Prof. Edwards, we switched order of the list comprehension
generators in the fill crossword and fill line functions. This has the effect
of staggering memory-intensive recursive calls to fill crossword and reducing
the likelihood of expensive heap overflows.

fill_crossword dict (l:ls) =

[line : rest | rest <- fill_crossword dict ls,

line <- fill_line dict l]

As will be shown in section 7, this change led to a speedup for both solvers,
particularly the parallel one.

Another attempt involved generating candidates without a list comprehen-
sion at all. Instead, we used the sequence function, which takes lists as a
parameter and returns their Cartesian product, to generate all possible solution
candidate combinations.

fill_crossword dict grid = sequence result_grid

where result_grid = Prelude.map (fill_line dict) grid

This modification led the program to consume even more memory and spend
more time in garbage collection; we reverted it to the flipped list comprehension
above.

6.2 Set and List Comparison

Another possible source of problems we identified was how words were being
picked from the dictionary when building candidate grids. Instead of Map Int

(Set String), we changed the dictionary passed to the fill functions to be
of type Map Int [String], in order to avoid possible overhead from the Set

toList function. This did not affect the speed or memory consumption, perhaps
because the results of Set toList are already being efficiently cached.

6.3 Dictionary Word Storage

We attempted to speed up dictionary lookups by eliminating the conversion step
from String to Square and back. This involved changing the dictionary type
from Map Int (Set String) to Map Int (Set [Square]). This did not end
up changing much, but it was one of the few cases in which the parallel version
ran slightly faster than the sequential version.

8

7 Improved Parallelization Results

After implementing these improvements and dramatically shrinking the size of
the chunks being passed to our sparks (from 10000 → 50), we observe the results
shown in Figure 7.

Figure 7: Parallelization strategy from 5.4 with improvements, -N4

Note the consistently higher activity on the cores and the absence of gaps
as wide as those in Figure 6. Since the chunk size is so much smaller than the
previous test, we see a dramatically increased number of sparks: about 392,000.
As in earlier tests, however, all but 16 GC’d sparks and 24 fizzles successfully
converted. For the first time, we are able to observe a speedup relative to the
sequential version. The optimizations in Section 6 also benefited the latter:
it now runs the task in 10.70s. However, the parallel version is even faster,
finishing in 9.05s, 7 seconds faster than in the previous test. This buys us a
final speedup of about x1.18. Granted, though the two allocate a similar number
of bytes over their lifetimes—about 40 billion for the sequential version and 36
for the parallel—the productivity of the sequential version is much higher. It
spends 97.1% of its time in MUT where the parallel version spends just 24.5%,
leaving apparent room for future optimizations.

8 Discussion

While we were able to achieve high degrees of parallelization, the memory re-
quirements of our program overwhelmed most of the accompanying performance
benefits. However, the performance benefits we did see underneath the garbage
collection overhead lead us to believe that further improvements are still possi-
ble.

9

A Source Code

A.1 Main.hs

1 import Data.Map

2 import Data.Set

3 import Data.List

4 import Data.List.Split

5 import Control.Parallel.Strategies

6 import System.Random

7 import System.Environment(getArgs, getProgName)

8 import System.Exit(die)

9 import DictUtil

10 import SquareDefs

11 import GenerateGrid

12

13 fill_and_check_s :: Map Int (Set [Square]) -> [[Square]] -> [[[Square]]]

14 fill_and_check_s dict grid = do

15 let grids = fill_crossword dict grid

16 let candidates = Prelude.map transpose grids

17 Prelude.filter (check_crossword dict) candidates

18

19 fill_and_check_p :: Map Int (Set [Square]) -> [[Square]] -> [[[Square]]]

20 fill_and_check_p dict grid = do

21 let f = Prelude.filter (check_crossword dict)

22 let grids = fill_crossword dict grid

23 let m = Prelude.map transpose grids

24 let c = Data.List.Split.chunksOf 50 m

25 let p = parBuffer 100 rseq

26 let sols = Prelude.map f c `using` p

27 concat sols

28

29 main :: IO ()

30 main = do args <- getArgs

31 case args of

32 [dimS, mS, threshS, dictPath, deterministic, parallel] -> do

33 seed <- case deterministic of

34 "y" -> return $ mkStdGen 15

35 _ -> newStdGen

36 let dim = read dimS :: Int

37 let m = read mS :: Int

38 let thresh = read threshS :: Float

39 let result = generateGrid dim m thresh seed

40 let peeled = maybe [[]] (\x -> x) $ result

41 mapM_ (putStrLn) $ Prelude.map show peeled

42 dictStream <- readFile dictPath

43 let dict = build_dict dictStream

10

44 filled <- case parallel of

45 "y" -> return $ fill_and_check_p dict peeled

46 _ -> return $ fill_and_check_s dict peeled

47 mapM_ (printGrid) filled

48 let num = show (length filled)

49 putStrLn $ "found " ++ num ++ " ways to fill the given grid"

50 _ -> do pn <- getProgName

51 die $ "Usage: "++pn++" <dimension> <min_word_length>\

52 \ <probability_threshold> \

53 \ <dict_filepath> \

54 \ <deterministic> \

55 \ <parallel>"

A.2 SquareDefs.hs

1 module SquareDefs where

2

3 import Control.DeepSeq

4

5 data Square = Black | White Char

6

7 instance Show Square where

8 show Black = "@"

9 show (White c) = [c]

10

11 instance Eq Square where

12 (==) Black Black = True

13 (==) (White a) (White b) = (a == b)

14 (==) _ _ = False

15

16 instance NFData Square where

17 rnf s = s `seq` ()

18

19 instance Ord Square where

20 Black `compare` Black = EQ

21 (White a) `compare` (White b) = (a `compare` b)

22 Black `compare` _ = GT

23 _ `compare` Black = LT

A.3 DictUtil.hs

1 module DictUtil where

2

3 import Data.Set

11

4 import Data.Map

5 import Data.Char

6 import Data.List

7 import SquareDefs

8

9

10 blockedSq :: Char

11 blockedSq = 'X'

12

13 set_unwrap :: Maybe (Set [Square]) -> Set [Square]

14 set_unwrap (Just x) = x

15 set_unwrap Nothing = Data.Set.empty

16

17 getWordSet :: Map Int (Set [Square]) -> Int -> Set [Square]

18 getWordSet dict len = set_unwrap $ Data.Map.lookup len dict

19

20 pick_word :: Set [Square] -> [[Square]]

21 pick_word dict_slice = Data.Set.toList dict_slice

22

23 fill_word :: Map Int (Set [Square]) -> [Square] -> [[Square]]

24 fill_word _ [] = [[]]

25 fill_word dict single_word = pick_word candidateSet

26 where candidateSet = getWordSet dict $ length single_word

27

28 fill_line :: Map Int (Set [Square]) -> [Square] -> [[Square]]

29 fill_line _ [] = [[]]

30 fill_line dict xs = [w ++ blocked ++ r | w <- fill_word dict firstWord,

31 r <- fill_line dict restOfLine]

32 where (word, suffix) = break isBlocked xs

33 (blocked, restOfLine) = span isBlocked suffix

34 isBlocked Black = True

35 isBlocked (White _) = False

36

37

38 fill_crossword :: Map Int (Set [Square]) -> [[Square]] -> [[[Square]]]

39 fill_crossword _ [] = [[]]

40 fill_crossword dict (l:ls) = [c : r | c <- fill_crossword dict ls,

41 r <- fill_line dict l]

42

43 -- An alternative fill_crossword. In our tests, it did not perform as well

44 {- sequence result_grid

45 where result_grid = Prelude.map (fill_line dict) unfilled_grid -}

46

47 check_word :: Map Int (Set [Square]) -> [Square] -> Bool

48 check_word _ [] = True

49 check_word dict single_word = Data.Set.member single_word candidateSet

50 where candidateSet = getWordSet dict $ length single_word

51

12

52 check_line :: Map Int (Set [Square]) -> [Square] -> Bool

53 check_line _ [] = True

54 check_line dict xs = check_word dict firstWord && check_line dict restOfLine

55 where (firstWord, suffix) = break isBlocked xs

56 (_, restOfLine) = span isBlocked suffix

57 isBlocked Black = True

58 isBlocked (White _) = False

59

60 check_crossword :: Map Int (Set [Square]) -> [[Square]] -> Bool

61 check_crossword dict grid = Prelude.foldl (&&) True m

62 where m = Prelude.map (check_line dict) grid

63

64 check_crosswords :: Map Int (Set [Square]) -> [[[Square]]] -> Bool

65 check_crosswords dict grids = Prelude.foldl (&&) True m

66 where m = Prelude.map (check_crossword dict) grids

67

68 valid_dict_word :: String -> Bool

69 valid_dict_word w = Prelude.foldl (&&) True $ Prelude.map isAcceptable w

70 where isAcceptable c = isAscii c && isLower c

71

72 get_valid_words :: String -> [String]

73 get_valid_words streamIn = Prelude.filter valid_dict_word $ words streamIn

74

75 insert_word :: Map Int (Set [Square]) -> String -> Set [Square]

76 insert_word dict single_word = Data.Set.insert squarified_word len_set

77 where len_set = getWordSet dict $ length single_word

78 squarified_word = Prelude.map toSquare single_word

79 toSquare c = White c

80

81 update_set :: Map Int (Set [Square]) -> String -> Map Int (Set [Square])

82 update_set dict single_word = Data.Map.insert word_len updated_set dict

83 where word_len = length single_word

84 updated_set = insert_word dict single_word

85

86 build_dict_rec :: Map Int (Set [Square]) -> [String] -> Map Int (Set [Square])

87 build_dict_rec dict [] = dict

88 build_dict_rec dict (w:ws)= update_set (build_dict_rec dict ws) w

89

90 build_dict :: String -> Map Int (Set [Square])

91 build_dict streamIn = build_dict_rec Data.Map.empty valid_words

92 where valid_words = get_valid_words streamIn

93

94 fill_and_check :: Map Int (Set [Square]) -> [[Square]] -> [[[Square]]]

95 fill_and_check dict emptyGrid = Prelude.filter (check_crossword dict) candidates

96 where candidates = Prelude.map transpose f

97 f = fill_crossword dict emptyGrid

13

A.4 GenerateGrid.hs

1 module GenerateGrid where

2

3 import Data.List (sortBy)

4 import Data.Map.Strict (Map, (!))

5 import qualified Data.Map.Strict as Map

6 import Data.Set (Set)

7 import qualified Data.Set as Set

8 import System.Random

9 import SquareDefs

10

11 type Index = (Int, Int)

12 type Constraint = (Int, Int, Int, Int)

13 type Constraints = Map Index Constraint

14

15 probs :: RandomGen g => Int -> g -> [Float]

16 probs 0 _ = []

17 probs n s = r : probs (n-1) s'

18 where

19 (r, s') = randomR (0.0::Float, 1.0::Float) s

20

21 indices :: Int -> Int -> Set Index

22 indices h w = Set.fromList $ [(i,j) | i <- [0..(h - 1)], j <- [0..(w - 1)]]

23

24 initConstraints :: Int -> Int -> Constraints

25 initConstraints h w = Map.fromSet (_ -> (0, w - 1, 0, h - 1)) (indices h w)

26

27 updateConst :: Index -> Index -> Constraint -> Constraint

28 updateConst (bi, bj) (i, j) (l,r,t,b) = (nl, nr, nt, nb)

29 where

30 (nl, nr) | not sameRow = (l, r)

31 | left = (max l bj + 1, r)

32 | right = (l, min r bj - 1)

33 | otherwise = (i, j)

34 (nt, nb) | not sameCol = (t,b)

35 | above = (max t bi + 1, b)

36 | below = (t, min b bi - 1)

37 | otherwise = (i, j)

38 sameRow = bi == i

39 (left, right) = (bj < j, bj > j)

40 sameCol = bj == j

41 (above, below) = (bi < i, bi > i)

42

43 adjustWithKeyList :: Ord k => (k -> a -> a) -> [k] -> Map k a -> Map k a

44 adjustWithKeyList _ [] m = m

45 adjustWithKeyList f (x:xs) m = Map.adjustWithKey f x $ adjustWithKeyList f xs m

14

46

47 addBS :: Index -> Constraints -> Constraints

48 addBS (i,j) con = updateRow $ updateCol con

49 where

50 updateCol c = adjustWithKeyList f col c

51 updateRow c = adjustWithKeyList f row c

52 f = updateConst (i,j)

53 col = filter (\(_,b) -> b == j) keyList

54 row = filter (\(a,_) -> a == i) keyList

55 keyList = Map.keys con

56

57 checkSquare :: Index -> Constraints -> Int -> Bool

58 checkSquare (i,j) c m | i - top < m && i - top /= 0 = False

59 | bot - i < m && bot - i /= 0 = False

60 | j - left < m && j - left /= 0 = False

61 | right - j < m && right - j /= 0 = False

62 | otherwise = True

63 where

64 (left, right, top, bot) = c ! (i,j)

65

66 spiralIndices :: Int -> Int -> [Index]

67 spiralIndices 0 _ = []

68 spiralIndices 1 w = [(0, i) | i <- [0..(w - 1)]]

69 spiralIndices h w = (++) (f 0 0) $ adj $ spiralIndices (h - 2) (w - 2)

70 where

71 f i j = (i,j) : l i j

72 l i j | j < w - 1 && i == 0 = f i (j + 1)

73 | j == w - 1 && i < h - 1 = f (i + 1) j

74 | j > 0 && i == h - 1 = f i (j - 1)

75 | j == 0 && i > 1 = f (i - 1) j

76 | otherwise = []

77 adj spiral = map (\(a, b) -> (a + 1, b + 1)) spiral

78

79 fillIn :: [Index] -> [Bool] -> Constraints -> Int -> [Square]

80 fillIn [] _ _ _ = []

81 fillIn _ [] _ _ = []

82 fillIn (i:is) (b:bs) c m | not b = white

83 | checkSquare i c m = black

84 | otherwise = white

85 where

86 white = (White '_') : fillIn is bs c m

87 black = Black : fillIn is bs (addBS i c) m

88

89 unravel :: Int -> [(Index, Square)] -> [[Square]]

90 unravel h s = map getRow [0..(h - 1)]

91 where

92 getRow i = map snd $ sortBy my_compare $ filter (isRow i) s

93 my_compare ((_,y1),_) ((_,y2),_) = compare y1 y2

15

94 isRow i ((x, _), _) = x == i

95

96 generateGrid :: RandomGen g => Int -> Int -> Float -> g -> Maybe [[Square]]

97 generateGrid dim m thresh seed | even dim = Just even_grid

98 | otherwise = Nothing

99 where

100 even_grid = half ++ rev_half

101 rev_half = reverse $ map reverse half

102 half = unravel half_h $ zip s $ squares

103 squares = fillIn s b c m

104 s = spiralIndices half_h dim

105 c = initConstraints half_h dim

106 b = map (\x -> x <= thresh) p

107 p = probs (half_h * dim) seed

108 half_h = div dim 2

109

110 printGrid :: [[Square]] -> IO ()

111 printGrid grid = do mapM_ (putStrLn) $ map show grid

112 putStrLn ""

16

