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Motivation
-Commonly used in statistical machine learning for estimating regression 
coefficients

-Big data is taking over the world, and one of the most common things to do is to 
fit regression lines to these datasets and find trends 

-Computing a gradient involves taking a large sum; this computation is repeated 
many times



The Gradient Descent Algorithm
-We focused on 2 classes of loss functions

-Linear least squares (analytical solution as a sanity check)

-Cross entropy logistic (no analytical solution)

-”Pick any arbitrary point for some convex function, subtract the gradient of the 
loss function (times some step size), and repeat for a finite number of steps or 
until you get convergence”



The Gradient Descent Algorithm
-Interesting note about logistic: no numerical convergence, but loss function decreases

-Spent time fine-tuning the learning rate (step size), number of steps/tolerance

-Otherwise, all behavior is as expected



Our Program
-Reads in data from CSV and stores in memory as [[Double]] (which we refer to 
as a Dataframe)

-At each step, computes the gradient with a map (gradFunc, which is essentially 
a function that computes a row of the gradient) and a fold (sequentialMegaFold, 
which essentially sums up all of the columns)



Parallelism - First Attempt
-Transformed Dataframe “back and forth” using REPA arrays, transpose to 
accommodate the fold across rows



REPA and Amdahl’s Law
-REPA is a good library. Sometimes, it’s a little too good.

-REPA arrays are much faster than Haskell lists, to the point where our fold 
operation only took up roughly ~12% of our computation time, and our theoretical 
maximum speedup was ~1.2x

-The conversions between lists and REPA arrays and transposes actually took up 
a majority of the runtime (rendering the effects of any parallel operations minimal)

-So, for the purposes of this project, we stuck with Haskell lists



Parallelism - New Attempt
-Gave it away in the last slide, but we parallelized the fold (aka the summation) in 
a function called parallelMegaFold

-sequentialMegaFold took up ~ 98% of the computation in the sequential 
algorithm*, and parallelMegaFold took up ~ 82%  of the computation in the 
parallel algorithm

-Theoretical speedup of sequential algorithm using parallelism ~ 50x

-Theoretical speedup of parallel algorithm (using Amdahl’s law) ~ 5x

*increases with input size; tested on 10,000 row input



Parallelism
-Settled on static partitioning, since we know each chunk of work takes the same 
amount of time

-Basically, partition list, compute sums of partitions with parMap and 
sequentialMegaFold, and then sequentialMegaFold the results



Performance
-128 Chunks, 2 columns x 100,000 rows

-6th Generation Intel Core i5 (6 cores, overclocked to 4.19 GHz)

-16GB 2133 MHz DDR4 RAM

-250GB Samsung 850 EVO SSD

-Ubuntu 20.04

-I know my PC is too powerful just to be used for tasks like this. I am a Fundies TA 
and spend too many of my TA paychecks on upgrades and watercooling. I like to 
think it’s in the spirit of the class?



Performance: Parallel vs. Sequential
-Nearly 40x speedup over sequential algorithm (when both are given 6 cores)

-Speedup increases with input size

-This is a big speedup that seemed too good to be true. But we parallelized an 
operation that took ~98% of the computation, which is a lot of work



Performance: Cores
-Roughly a 3x speedup for parallel algorithm just by giving it more cores



Performance: Cores
-Threadscope looks pretty legit to us! Even though it was a pain to install



Performance: Cores
-Pretty good, but we can do better by playing with granularity



Performance: Chunking
-Interesting phenomenon: as we add more chunks, the runtime decreases, but 
then it increases again

-We were ultimately able to get a 4x speedup over the sequential algorithm by 
playing around with granularity (129 seconds -> 29 seconds)



Performance: Chunking
-As number of chunks increases, chunk size decreases

-Past a certain point, the parallelism becomes so fine grained that it is essentially 
the sequential algorithm (i.e. mapping to chunks that are only 1 row)

-We strongly suspect optimal number of chunks depends on specific setup: input 
size, number of cores, etc



Performance: Chunking
-Threadscope confirms that sparks are not an issue; rather, the work done in 
parallel is just very little (most work done on one core)



Conclusion
-We got a 40x speedup over the sequential algorithm with 128 chunks. That 
exceeded even our wildest expectations at the beginning of the project. Speedup 
increases with input size, and is thus VERY scalable

-Parallelism worked very well here! The parallel algorithm got a 4x speedup by 
adding more cores and tweaking granularity, and our theoretical maximum was 5x. 
More granularity was only better up to a certain point; more cores had diminishing 
returns

-Haskell stack is cool; installing Threadscope is not

-Amdahl’s Law came back to haunt us



Moving Forward
-Project will be made open source! But we wanted you guys to see it first

-Could try to parallelize across columns; might help with higher dimensional data, but 
also might generate too many sparks since there are still a lot of rows

-One thing that could be interesting to play with would be to optimize the parameters 
we are using for gradient descent (step size, number of steps, tolerance)

-We can invent perfect parallelism to achieve our maximum theoretical speedup! But in 
all seriousness, I do want to learn more about GPU computing

-You should make a PFP part 2 :)

-I also ordered a book on CUDA programming, per your and Prof. Kim’s    
recommendations
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