
A Parallelized Gradient Descent
Algorithm for Regression Coefficient

Estimation on Massive Data
Max Helman and Riya Chakraborty

Motivation
-Commonly used in statistical machine learning for estimating regression
coefficients

-Big data is taking over the world, and one of the most common things to do is to
fit regression lines to these datasets and find trends

-Computing a gradient involves taking a large sum; this computation is repeated
many times

The Gradient Descent Algorithm
-We focused on 2 classes of loss functions

-Linear least squares (analytical solution as a sanity check)

-Cross entropy logistic (no analytical solution)

-”Pick any arbitrary point for some convex function, subtract the gradient of the
loss function (times some step size), and repeat for a finite number of steps or
until you get convergence”

The Gradient Descent Algorithm
-Interesting note about logistic: no numerical convergence, but loss function decreases

-Spent time fine-tuning the learning rate (step size), number of steps/tolerance

-Otherwise, all behavior is as expected

Our Program
-Reads in data from CSV and stores in memory as [[Double]] (which we refer to
as a Dataframe)

-At each step, computes the gradient with a map (gradFunc, which is essentially
a function that computes a row of the gradient) and a fold (sequentialMegaFold,
which essentially sums up all of the columns)

Parallelism - First Attempt
-Transformed Dataframe “back and forth” using REPA arrays, transpose to
accommodate the fold across rows

REPA and Amdahl’s Law
-REPA is a good library. Sometimes, it’s a little too good.

-REPA arrays are much faster than Haskell lists, to the point where our fold
operation only took up roughly ~12% of our computation time, and our theoretical
maximum speedup was ~1.2x

-The conversions between lists and REPA arrays and transposes actually took up
a majority of the runtime (rendering the effects of any parallel operations minimal)

-So, for the purposes of this project, we stuck with Haskell lists

Parallelism - New Attempt
-Gave it away in the last slide, but we parallelized the fold (aka the summation) in
a function called parallelMegaFold

-sequentialMegaFold took up ~ 98% of the computation in the sequential
algorithm*, and parallelMegaFold took up ~ 82% of the computation in the
parallel algorithm

-Theoretical speedup of sequential algorithm using parallelism ~ 50x

-Theoretical speedup of parallel algorithm (using Amdahl’s law) ~ 5x

*increases with input size; tested on 10,000 row input

Parallelism
-Settled on static partitioning, since we know each chunk of work takes the same
amount of time

-Basically, partition list, compute sums of partitions with parMap and
sequentialMegaFold, and then sequentialMegaFold the results

Performance
-128 Chunks, 2 columns x 100,000 rows

-6th Generation Intel Core i5 (6 cores, overclocked to 4.19 GHz)

-16GB 2133 MHz DDR4 RAM

-250GB Samsung 850 EVO SSD

-Ubuntu 20.04

-I know my PC is too powerful just to be used for tasks like this. I am a Fundies TA
and spend too many of my TA paychecks on upgrades and watercooling. I like to
think it’s in the spirit of the class?

Performance: Parallel vs. Sequential
-Nearly 40x speedup over sequential algorithm (when both are given 6 cores)

-Speedup increases with input size

-This is a big speedup that seemed too good to be true. But we parallelized an
operation that took ~98% of the computation, which is a lot of work

Performance: Cores
-Roughly a 3x speedup for parallel algorithm just by giving it more cores

Performance: Cores
-Threadscope looks pretty legit to us! Even though it was a pain to install

Performance: Cores
-Pretty good, but we can do better by playing with granularity

Performance: Chunking
-Interesting phenomenon: as we add more chunks, the runtime decreases, but
then it increases again

-We were ultimately able to get a 4x speedup over the sequential algorithm by
playing around with granularity (129 seconds -> 29 seconds)

Performance: Chunking
-As number of chunks increases, chunk size decreases

-Past a certain point, the parallelism becomes so fine grained that it is essentially
the sequential algorithm (i.e. mapping to chunks that are only 1 row)

-We strongly suspect optimal number of chunks depends on specific setup: input
size, number of cores, etc

Performance: Chunking
-Threadscope confirms that sparks are not an issue; rather, the work done in
parallel is just very little (most work done on one core)

Conclusion
-We got a 40x speedup over the sequential algorithm with 128 chunks. That
exceeded even our wildest expectations at the beginning of the project. Speedup
increases with input size, and is thus VERY scalable

-Parallelism worked very well here! The parallel algorithm got a 4x speedup by
adding more cores and tweaking granularity, and our theoretical maximum was 5x.
More granularity was only better up to a certain point; more cores had diminishing
returns

-Haskell stack is cool; installing Threadscope is not

-Amdahl’s Law came back to haunt us

Moving Forward
-Project will be made open source! But we wanted you guys to see it first

-Could try to parallelize across columns; might help with higher dimensional data, but
also might generate too many sparks since there are still a lot of rows

-One thing that could be interesting to play with would be to optimize the parameters
we are using for gradient descent (step size, number of steps, tolerance)

-We can invent perfect parallelism to achieve our maximum theoretical speedup! But in
all seriousness, I do want to learn more about GPU computing

-You should make a PFP part 2 :)

-I also ordered a book on CUDA programming, per your and Prof. Kim’s
recommendations

Acknowledgements
Thank you Prof. Edwards! We really appreciate that you took the time to meet with
us. We are both juniors, and have found the opportunities for interaction with
professors so far to be limited, so this was a great experience for us. Plus, we both
signed up for your PLT class next semester… so we are not done with the
suffering yet!

Please stay in touch!
Via FB/LinkedIn/etc

Acknowledgements
Benjamin Flin is a saint. He stayed on with us for 3 hours helping us determine a
parallelization strategy and debugging our program. He deserves a raise.

Thank you again! And have a nice, safe, and restful
break! Happy grading - Max and Riya

