
1

A Parallelized Gradient Descent Algorithm for Regression
Coefficient Estimation on Massive Data

COMS 4995 Parallel Functional Programming Final Project Report

Max Helman (mhh2148) and Riya Chakraborty (rc3242)
For our final project in COMS 4995 Parallel Functional Programming at Columbia University, we propose a parallelized Gradient

Descent Algorithm that easily scales to massive inputs. We implemented the algorithm in Haskell for both linear and logistic regression
coefficient estimation. The most expensive operation in our sequential approach was a fold on a list-based data structure, which was
parallelized using static partitioning. Our parallel algorithm on 6 cores had roughly a 40x speedup over the sequential algorithm,
and the speedup increases with input size. We also achieved a roughly 4x speedup on the parallel algorithm by giving the program
access to 6 cores instead of 1, which approached our theoretical upper bound of a 5x speedup for the parallel algorithm.

I. INTRODUCTION

For our final project in COMS 4995 Parallel Functional
Programming (Fall 2020), we aimed to use Parallel Haskell to
speed up a Gradient Descent algorithm in a way that was scal-
able to massive datasets. Gradient Descent is an optimization
technique used to estimate parameters of a function, and it is
especially useful when the function does not have an analytical
solution. It is commonly used in Statistical Machine Learning.
The Gradient Descent algorithm starts out with an initial guess
of the parameters θ0 and some sort of convex loss function
L : θ × {yi, xi}ki=1 → R that takes the estimated parameters
θ ∈ Rd and the data itself ({yi, xi}ki=1) as its parameters; we fit
functions that have the same number of estimated parameters
as the data xi (which is a vector quantity) has dimensions, and
we refer to this dimensionality as d. Then, the algorithm com-
putes the gradient of the loss function ∇L given the current
estimated parameters and subtracts the gradient, multiplied by
some learning rate α, from the previous estimate; the new
estimate θn is given as θn = θn−1−α∇L(θn−1, {yi, xi}ki=1).
This continues until either the numerical solution converges or
a predetermined number of iterations occur. The final estimate
is the output. We were particularly excited by the potential
for parallelism when computing the gradient, since it often
involves summing up derivatives of every data point, and we
noticed that the sums across data points can be done in parallel.
Where we saw less of an application was with the sequence of
iterative steps, since each step depends on the value obtained
in the prior step.

II. BUILDING A REGRESSION FRAMEWORK

Our first priority was ensuring that we had a robust and cor-
rect system for estimating regression coefficients sequentially.
This involved processing input and running the actual algo-
rithm itself to produce an output. As a proof-of-concept, we
included two loss functions, one which is solvable analytically
(linear regression) and one which is not (logistic regression).

A. Processing Input

Our first task was to come up with some sort of I/O
paradigm; we settled on using CSV files, since these are
common in practice, and most other formats (such as Excel,

Google Sheets, and Relational Databases) can easily be con-
verted to CSVs. Since each datapoint is used at least once
in each step of the iteration, it does make sense to store the
data in memory rather than asking for a new I/O operation
at each step. Therefore, we created a functional analog to
something like a Pandas Dataframe in Python, designed to be
efficient primarily with map and fold operations. The actual
data structure was simpler than it sounds: we decided that
a list of lists would suffice (where the inner lists represent
rows), and in the rare case that we needed direct access to an
element in one of the rows, we could incur a small O(d)
penalty: we would already be performing an operation on
the row of interest, and for large data, there is normally a
relatively negligible number of columns by comparison. We
read all data in as Doubles, so the Dataframe was ultimately
of type [[Double]]. A small amount of input preprocessing
was necessary, but this was a one time linear operation, and
will probably not come back to bite us except with Amdahl’s
Law (Section III.A).

B. Computing the Gradient for Linear Regression

For this project, we started with the linear least-squares
model, where the loss function was the sum of the squared
residuals in the data. While there actually is an analytical
solution to this loss function, it served as an excellent proof
of concept because we could easily check if our answer was
correct, and it fundamentally operates the same way as most
other loss functions. Here, the loss function is given as:

L(θn−1, {yi, xi}ki=1) =

k∑
i=1

(yi − (θn−1 · xi))2

Please note that this notation assumes a 1 is appended to the
beginning of xi as to represent the intercept term. Correspond-
ingly, the gradient is given as:

∂L

∂θ1
=

k∑
i=1

−2 (yi − (θn−1 · xi))

∂L

∂θj
=

k∑
i=1

−2 (yi − (θn−1 · xi)) (xi,j)

Luckily, this also lends itself well towards mapping, and we
created a list (with the function computeGradRowLinear)



2

of the function for computing the parameter corresponding to
the intercept (gradIntLinear) followed by a repeating (but
specified) general function (gradSlopeLinear) for computing
derivatives of the parameters corresponding to slopes (where
slope and intercept correspond to parameters bz of the form
of some linear function, for example: b0 + b1x1 + b2x2 + ...).
These functions are all in Grad.hs. Computing the overall
gradient at each step is done by mapping the list of these
partially applied functions to each row in the Dataframe (of
type [[Double]]), and then applying a fold operation (referred
to as sequentialMegaFold) that essentially sums across each
row and returns a list; this is done in a function called
computeGrad. sequentialMegaFold and computeGrad are
found in Grad.hs, and sequentialMegaFold is the core part
of the algorithm that we parallelized (to be discussed soon).

C. Computing the Gradient for Logistic Regression

We also decided to extend this model for logistic regression,
which is actually a problem that cannot be solved analytically.
Logistic functions are especially useful for binary classifi-
cation in Machine Learning, since they are continuous and
differentiable. A logistic curve is of the form:

hθ(θn−1, {xi}ki=1) =
1

1 + e(θn−1·xi)

Please again note that this notation makes the same assumption
as before (that a 1 is appended to the beginning of the data
for the intercept term). The loss function here is chosen as
cross-entropy, which has an incredibly unwieldy formula but
a somewhat more simple gradient, computed as:

∂L

∂θ1
=

k∑
i=1

hθ(θn−1, {xi}ki=1)− yi

∂L

∂θj
=

k∑
i=1

(
hθ(θn−1, {xi}ki=1)− yi

)
(xi,j)

The functions we used to compute these values are all found in
Grad.hs, and are analogs to the functions for linear regression:
hTheta and g helped us compute the logistic curve, and then
computeGradRowLogistic computed a row of the gradient
from a row of the data. What is especially nice here is
that we wrote the overall program to be modular between
the two loss functions, as will be seen in the next section.
Moreover, as part of the I/O of our program, we added the
functionality that allows the user to choose whether they want
a linear or logistic-based loss function for their parameter
optimization/fitting.

D. Optimization of Original Guess

Due to the convexity of the least squares loss function for
both the linear and logistic functions, the original estimate of
the parameters can be arbitrary and the subsequent estimates
will still converge numerically to the optimal solution. There
are two primary stopping conditions that are used in practice:
numerical convergance (descendTolerance) and number of
steps (descendSteps). Both were written to be agnostic to any

particular loss function, and thus workable with either linear
or logistic regression, and any future loss functions should we
add them. Essentially, both take in either a parallel/sequential
choice from the user, number of chunks (for parallelization),
Dataframe, a function for computing gradient, estimated pa-
rameters, and a learning rate, and tolerance level or number of
steps (depending on which descent function is being used), and
at each step, they perform identical calculations by computing
the gradient with the current estimated parameters and then
forming a new estimate. However, the function signatures
and stopping conditions are different: descendSteps takes
in a number of steps and stops once that many steps have
been taken, and descendTolerance takes in a tolerance and
stops once the maximum value of any component of the
gradient fails to exceed said tolerance. Only one of these
algorithms needs to be used in practice, but we figured we
would give either option. We did run into some sort of strange
convexity with the logistic function where the solution did
not always converge numerically, although it continued to
optimize the loss function. Since this loss function is not
solvable analytically, there is no one solution that is necessarily
most optimal, so our suspicion is that the gradient would
cycle at one point. Despite this behavior, we did verify both
graphically and computationally that the value of the loss
function decreased at each step, and that the results it gave
were very reasonable. However, this perhaps makes the logistic
function much better suited for use with descendSteps than
with descendTolerance, since numerical convergence cannot
be guaranteed. Another thing we noticed was that, depending
on the size of data we were processing, we would have to
manually tweak the learning rate (step size in our case) and the
parameters for number of steps and/or tolerance. This is due
to the fact that, as the size of the data changes, the learning
rate must also be modified, as one too high would lead to
an ”exploding” gradient (by which the gradient computation
would not converge and would lead to a numerical overflow
for our parameters – a.k.a a lovely NaN), and one too low
would lead to (what we suspect) is a program that continuously
runs/runs longer than it should to yield the parameter values.
Thus, for our purposes, we established a short ”optimized
parameters” table that serves as a baseline, but handy guide for
inputting step size/number of steps when using descendSteps
as the desired gradient function based on the size of data
(number of rows in data). This can be found in our project
directory (under the ”report” sub-directory).

III. THE PARALLEL GRADIENT DESCENT ALGORITHM

We parallelized the ”fold” operation (sequentialMegaFold),
which is essentially a large summation of the columns in our
Dataframe. This took roughly 85% of the computation time
since it was a large repeated calculation, so we figured it
would be prime for parallelizing. Our original approach used
the REPA library, but due to the limits of Amdahl’s Law and
the task at hand (make the sequential algorithm run faster by
parallelizing it), this was not suitable for the project. Instead,
we ultimately used static partitioning, which proved to be a
solid choice.



3

A. REPA and the Limits of Amdahl’s Law

Our first attempt at parallelism involved converting our
Dataframe to be based off of REPA arrays. REPA arrays are
high performance, shape polymorphic, and parallel, so they
figured to be an excellent choice. The REPA API offers a
multitude of functions that have both sequential and parallel
implementations, and we originally decided to transform our
sequentialMegaFold into a parallel, REPA-based implemen-
tation. This was roughly accomplished by first reading in
our Dataframe structure and converting it to a corresponding,
”flattened” version (i.e. [[Double]] to [Double]). This is due
to the fact that REPA works inherently as a wrapper for 1-
dimensional Haskell lists. We then used REPA to get a matrix
representation for our Dataframe, and as one may notice, this
was an extra back-and-forth, O(n) conversion which caused
our REPA implementation to already lend itself to a sense of
unwieldiness and intensive (sequential) computation, as the
flattening operation was not - and we believe cannot be -
parallelized (it was a simple concatenation of nested lists).
Working with REPA caused other issues that we noticed
during this implementation, as well. Though REPA now
provided us with our desired matrix representation of data,
the existing foldp function, which is a REPA-based parallel
fold, would not work in the way we wanted it to. Namely,
the fold was not written such that we could fold the sum
across rows of our Dataframe. Thus, we had to perform yet
another expensive conversion, a 2D transpose using REPA’s
backpermute, that could not inherently be parallelized if we
were to use the REPA API. We will mention, though, that
the computeP function was subsequently applied to bring the
REPA resultant array out of its ”delayed” representation, and
finally, used the aforementioned foldp to perform the desired
sum across rows in parallel. Finally, we converted our REPA
array back into a Haskell list, yet another O(n) operation,
to output from our then-parallel fold implementation. As is
apparent, though REPA offered a wide variety of opportunities
to parallelize using existing functions and though REPA
arrays are intrinsically efficient representations of big data,
the above conversions and transformations of data proved
necessary if our gradient descent algorithm were to work with
REPA. Since one of our main goals was to be able to work
with and parallelize computation on large sets of data, these
inherently expensive operations did not mesh well with our
algorithm. We explain in greater detail below.

Although REPA arrays are naturally much more efficient
than lists, we ran into two problems: converting from lists to
REPA arrays took a significant amount of computation which
lowered the percentage that could be parallelized, and REPA
arrays are so efficient on their own that parallelizing their
operations had very little effect on performance, since they
took up so little of the computational time being spent. This
brings us to Amdahl’s Law:

S(s) =
1

(1− p) + p
s

Here, S(s) is the speedup, s is the number of threads that the
parallel portion is given, and p is the proportion of execution
time in parallel. Since our sequential list-based algorithm spent

over 99% of its time on sequentialMegaFold, our theoret-
ical maximum speedup assuming perfect parallelism (where
s =∞) was rather large (our eventual parallel algorithm spent
roughly 80% of its time on this, which meant we should see a
speedup approaching 5x when giving it more cores). However,
the same operation with REPA arrays took roughly 20%
of the total computational time, so our theoretical maximum
speedup was 1.25x. Moreover, upon analysis with Thread-
scope, we found that a very small percentage (around 12%)
of our overall code was parallelized - i.e. the effects of REPA
were minimal. Therefore, for the purposes of this project, it
made much more sense to figure out how to parallelize a list-
based Dataframe and have a higher percentage of code that is
actually parallelized, rather than using REPA arrays, although
in the real world, REPA arrays are awesome.

B. Parallelization Strategy

Having had our hands forced by Amdahl’s Law into
parallelizing the Dataframe with list operations, we figured
static partitioning would be our best bet. Static partitioning
was an appropriate choice here because we have assurance
that each parallelized unit of work would take equal time,
since they were all fold operations on equally-sized lists. We
wrote a function parallelMegaFold in Main.hs that essen-
tially splits the original Dataframe into chunks, maps sequen-
tialMegaFold onto the chunks in parallel using parMap with
rdeepseq, and then performs one final sequentialMegaFold
on a list of the resulting arrays.

C. Parallel vs. Sequential Performance

First, we decided to test whether the parallel algorithm could
even beat the sequential algorithm, or if we had made things
worse for ourselves as we did in an earlier attempt. All tests
were performed on a machine with a 6th generation Intel
Core i5 (6 cores at 4.19 GHz), 16GB of 2133 MHz DDR4
RAM, and a Samsung 850 EVO SSD running Ubuntu 20.04.
We used 128 chunks and 1,000 iterations; the dataset was 2
columns by 100,000 rows. We did not add more columns (add
more dimensions/variables to optimize) because our algorithm
is parallelized on rows (which represent the number of data
points/size of dataset), which often vastly outnumber columns,
so we would expect and predict a less appreciable difference if
we were to test on a dataset with significantly more columns.

TABLE I
UNIT TESTING - SEQUENTIAL AND PARALLEL RUNTIMES

Rows Sequential Runtime (s) Parallel Runtime (s)

100 6.390e-2 2.848e-2

1000 2.465 0.223

10000 200.268 4.629

Above, we offer a ”sampler” of the observable differences
captured by our unit tests, which ran and timed our descend-
Steps function using a linear loss function. We were able
to achieve nearly a 45x speedup when using 6 cores and
128 chunks on a 10,000 line input. This is consistent with



4

our observation that sequentialMegaFold took over 99% of
the work in the sequential algorithm; it also means that the
algorithm lends itself very well to parallelism. We did notice
that the speedup increased with input size; this is because as
the input size increases, sequentialMegaFold does a larger
percentage of the work, and this is the operation that we
parallelize. Simply put, the algorithm scales quite nicely with
parallelism. Our approach clearly worked, but we wanted to
see if we could tune its performance even further.

D. Multicore Performance
We now wanted to compare the performance of the parallel

algorithm when we varied the number of cores. Our results
were as follows:

TABLE II
CORES AND RUNTIME

Cores Runtime (s)

1 129

2 98

4 50

6 45

Fig. 1. Runtime vs. Cores of our parallelized Gradient Descent Algorithm
(1,000 iterations) with 128 chunks on a 2 column by 100,000 row input.

As can be seen in Table II and Fig. 1, we were able to
decrease runtime from 129s on 1 core with 128 chunks to 45s
on 6 cores with 128 chunks. This was nearly a 3x speedup!
Returns appeared to diminish after the 4th core was given, but
excessive garbage collection did not seem to be much of a
problem; our threadscope output for the 6 core case is given
in Fig. 2:

Overall, this algorithm parallelized quite nicely with respect
to cores, but there was still further tweaking to be done with
respect to chunk size, especially since our speedup of 3x was
not yet near the theoretical bound of 5x.

E. Chunking and Granularity
As a result, we added to our I/O functionality an input

parameter that represents the number of chunks that the user

Fig. 2. Threadscope output of parallelized Gradient Descent Algorithm (1,000
iterations) with 128 chunks on a 2 column by 100,000 row input and 6 cores.

wishes to ”break” their parallel computation into. While static
partitioning ultimately worked great, we now needed to make
a design choice due to this addition of chunking; specifically,
we needed to figure out the ideal choice for number of chunks,
or how many chunks to split the original list into. While we
strongly suspect that the optimal answer depends on both the
size of the input and the number of cores given to the program,
we held those constant (at 2 columns, 100, 000 rows and 6
cores, respectively), and examined the effect chunk size had
on runtime. All tests were performed on the same machine
that was used for testing multicore performance, with the same
input and same number of iterations:

TABLE III
CHUNKS AND RUNTIME

Chunks Runtime (s)

8 489

16 259

32 122

64 73

128 45

256 35

512 31

1024 29

2048 28

4096 62

6144 176

What is particularly interesting here is that although the
runtime initially decreases with granularity, it once again
increases after the granularity hits a certain point. We came
up with two hypotheses for this phenomenon: either too many
sparks were being created, or using more chunks beyond a
certain point actually decreases the amount of work done in
parallel, because the result of all of the parallel computations
is computed sequentially (and thus after a certain number of
chunks, we reach a bottleneck due to the amount of sequential
computation). Upon examining Threadscope (the output for
6144 chunks is shown in Fig. 4), it appeared to be the latter:
every spark that was created converted, which means that there
was a significant increase in the amount of sequential work



5

Fig. 3. Runtime vs. Chunks of our parallelized Gradient Descent Algorithm
(1,000 iterations) with 6 cores on a 2 column by 100,000 row input.

being done. In fact, once the granularity reaches its maximum,
the parallel algorithm essentially becomes the sequential algo-
rithm.

Fig. 4. Threadscope output of parallelized Gradient Descent Algorithm (1,000
iterations) with 6144 chunks on a 2 column by 100,000 row input and 6 cores.

Again, we do strongly suspect that the exact optimal number
of chunks depends on the CPU, the number of threads, and
the input size. However, it appears that roughly 2048 chunks
would be the most optimal given these conditions. Our runtime
for this number of chunks hovered just under 30s, which gives
slightly more than a 4x speedup and approaches the elusive
5x theoretical bound.

IV. CONCLUSION

The Gradient Descent algorithm proved to lend itself very
well to parallelism. We were able to get it working for two loss
functions, one of which is solvable analytically and the other
of which is not, and it worked quite well with our CSV input.
We got roughly a 40x speedup over the sequential algorithm,
which we consider to be a massive success. The speedup
increased with input size, as more and more of the work done
by the algorithm could be parallelized. Using Amdahl’s Law,
we calculated a 5x theoretical upper bound for the speedup

when given more cores (since the fold operation comprised
roughly 80% of the computational workload), and by giving
the program access to more cores and tweaking the granularity
of the parallelism with the chunk size, we were able to achieve
slightly over a 4x speedup. It is likely not possible to achieve
the 5x speedup in real life, since Amdahl’s Law assumes
perfect parallelism, which does not exist. We noticed some
interesting phenomena, such as the runtime initially dropping
but then increasing as the granularity of the parallelism is in-
creased. REPA appeared to be a good choice at the beginning,
but turned out to eliminate the need for parallelism in the
first place due to Amdahl’s Law. Furthermore, the benefit of
adding more cores seemed to slow down significantly around
4 or so. While we ultimately did not have time to do so, it
would have been interesting to test the effects of parallelism
on high dimensional data, which would involve parallelizing
”horizontally” as well as vertically (i.e. across columns of our
Dataframe), and dealing with a whole host of new granularity
issues. Furthermore, we note that we had to tweak gradient-
related parameters such as step size (our learning rate), number
of steps, and tolerance level by ourselves in order to avoid
numerical overflow and other potential runtime issues. Given
the time, this is something that we would like to investigate
more in the future. Finally, we plan on making the project
open source and encourage anyone to contribute to it.

V. USAGE AND TESTING

The program can be built using the stack build com-
mand from inside the project directory. Then, the stack
run command can be used in the following manner: stack
run <filename> <loss function: linear/logistic> <guess
array> <parallel/sequential> <number of chunks>,
where each option corresponds to a parameter of the user’s
choice. The parameters are, filename (with correct path),
choice of loss function (using keywords linear/logistic, case-
insensitive), a guess input for parameters, keyword ”parallel”
or ”sequential” for the method of computation, and the cor-
responding number of chunks (Note: this number is ignored
if a sequential implementation is chosen; however, it must
be passed in). We have also integrated an automatic data
generation script that can allow the user to build their own
datasets of any size for testing/experimentation purposes. For
more details on usage, please consult our README.

One thing that we noticed immediately upon initial testing
and comparison of outcomes post-parallelization was just how
much faster our parallelized algorithm was! We therefore
included a mini test suite of unit tests (run stack test) that
use the TimeIt Haskell library. Here, we have provided a
scaffolding wherein we output the amount of time it takes
to run the actual descent algorithm. We have provided a few
cases, each with its own particular dataset size, and have run
the sequential and parallel implementations for each, as an
opportunity for comparison. We wanted to include this to just
appreciate the differences in runtime that we have observed -
and as the dataset size increases, so do the differences between
our sequential and parallel implementations. See Section III.C
for a snapshot of these results.



module Main where

import Grad
import System.Environment(getArgs)
import System.Exit(die)
import Data.List(isInfixOf)

{- |
Module      :  <File name or $Header$ to be replaced automatically>
Description :  Parallelized Gradient Descent algorithm for linear regression
Copyright   :  (c) <Max Helman, Riya Chakraborty>
License     :  BSD 3-Clause

Maintainer  :  mhh2148@columbia.edu, rc3242@columbia.edu
Stability   :  stable
Portability :  portable
-}

main :: IO()
main = do
            args <- getArgs
            input <- case args of
                [f, method, guess, parseq, chunks] -> return [f, method, guess, parseq, chunks]
                _ -> do
                        die $ "Usage: grad-descent <filename> <loss function: linear/logistic> <guess array> <parallel/sequential> 
<number of chunks>"
            csvData <- getCSVData (head input)

            let linMatch = or $ map ($ (head $ tail input)) (map isInfixOf ["Linear", "linear", "LINEAR"])
            let logMatch = or $ map ($ (head $ tail input)) (map isInfixOf ["Logistic", "logistic", "LOGISTIC"])

            appLoss <- case (linMatch || logMatch) of
                 True -> if linMatch then (return computeGradRowLinear) else (return computeGradRowLogistic)
                 False -> do
                            die $ "Choose either Linear or Logistic loss functions"

            let guess = read (head $ tail $ tail input) :: [Double]
            let choice = last $ init input
            let chunkNum = read $ last input :: Int

            print $ descendSteps choice chunkNum csvData appLoss guess (1000::Int) (0.0000001::Double)
--            print $ descendSteps choice chunkNum csvData appLoss guess (10000::Int) (0.001::Double)



module Grad where

import Control.Parallel.Strategies
import Data.List.Split

-- FUNCTIONS FOR PROCESSING DATA INPUT

--Creates the 'dataframe' structure (list of lists)
getCSVData :: FilePath -> IO [[Double]]
getCSVData filename = do
                        lns <- fmap lines (readFile filename)
                        return $ map (map (\x -> read x::Double)) (map words (map rep (tail lns)))

--Preprocessing for CSV files (turns all commas into spaces so we can use words)
rep :: [Char] -> [Char]
rep [] = []
rep (x:xs)
    | x == ',' = [' '] ++ (rep xs)
    | otherwise = [x] ++ (rep xs)

-- FUNCTIONS FOR GRADIENT DESCENT ALGORITHM

--Actual gradient descent algorithm (uses magnitude of gradient as stopping condition)
descendTolerance :: [Char] -> Int -> [a] -> ([Double] -> a -> [Double]) -> [Double] -> Double -> Double -> [Double]
descendTolerance parseq chunks csvData gradFunc guess tolerance stepSize
    | tolerance < (0::Double) = error "tolerance must be a positive value"
    | maxVal <= tolerance = guess
    | otherwise = descendTolerance parseq chunks (csvData) gradFunc (zipWith (-) guess (computeGrad parseq chunks csvData 
gradFunc guess stepSize)) tolerance stepSize
    where
        maxVal = maximum $ map abs (computeGrad parseq chunks csvData gradFunc guess stepSize)

--Actual gradient descent algorithm (uses numer of steps as stopping condition)
descendSteps :: [Char] -> Int -> [a] -> ([Double] -> a -> [Double]) -> [Double] -> Int -> Double -> [Double]
descendSteps parseq chunks csvData gradFunc guess steps stepSize
    | steps < 0 = error "you can't take negative steps"
    | steps == 0 = guess
    | otherwise = descendSteps parseq chunks (csvData) gradFunc (zipWith (-) guess (computeGrad parseq chunks csvData 
gradFunc guess stepSize)) (steps - 1) (stepSize)

--Compute the gradient
computeGrad :: [Char] -> Int -> [a] -> ([Double] -> a -> [Double]) -> [Double] -> Double -> [Double]
computeGrad parseq chunks csvData gradFunc params stepSize 
    | parseq == "parallel" = map (* stepSize) (parallelMegaFold (map (gradFunc params) csvData) chunks)
    | otherwise = map (* stepSize) (sequentialMegaFold (map (gradFunc params) csvData))

--Applies a fold to each column in the dataframe
sequentialMegaFold :: [[Double]] -> [Double]
sequentialMegaFold [] = []
sequentialMegaFold [x] = x
sequentialMegaFold xx@(x:xs:xss)
    | (length xx) == 2 = zipWith (+) x xs
    | otherwise = sequentialMegaFold ((zipWith (+) x xs):xss)

--Parallel glue code
parallelMegaFold :: [[Double]] -> Int -> [Double]
parallelMegaFold [] chunkNum = []
parallelMegaFold [x] chunkNum = x
parallelMegaFold (x:xs:[]) chunkNum = zipWith (+) x xs



parallelMegaFold x chunkNum =
                    if length x == 1 then
                        head x
                    else sequentialMegaFold $ parMap (rdeepseq) sequentialMegaFold chunks
                    where
                        chunks = chunksOf ((length x) `div` chunkNum) x

-- FUNCTIONS FOR GRADIENT COMPUTATION

--Compute a row of gradient
computeGradRowLinear :: [Double] -> [Double] -> [Double]
computeGradRowLinear params dataList = computeGradRowLinearHelper 0 params dataList

--Helper function to compute row of gradient
computeGradRowLinearHelper :: Int -> [Double] -> [Double] -> [Double]
computeGradRowLinearHelper n params dataList
    | n == (length dataList) = []
    | n == 0 = [(gradIntLinear params dataList)] ++ (computeGradRowLinearHelper (n+1) params dataList)
    | otherwise = [(gradSlopeLinear params dataList n)] ++ (computeGradRowLinearHelper (n+1) params dataList)

--Linear gradient function with respect to intercept
gradIntLinear :: [Double] -> [Double] -> Double
gradIntLinear params dataList = -2 * ((head dataList) - ((head params) + (sum (zipWith (*) (tail params) (tail dataList)))))

--Linear gradient function with respect to slope
gradSlopeLinear :: [Double] -> [Double] -> Int -> Double
gradSlopeLinear params dataList var = -2 *
                                    ((head dataList) - (head params) - (sum (zipWith (*) (tail params) (tail dataList)))) *
                                    (dataList !! var)

--Compute a row of the gradient in a logistic function
computeGradRowLogistic :: [Double] -> [Double] -> [Double]
computeGradRowLogistic params dataList = [h0 - y]
                                         ++  (zipWith (*) (xTail) (map (h0 -) (take (length xTail) (cycle [y]))))
                                         where h0 = hTheta params dataList
                                               xTail = tail dataList
                                               y = head dataList

--Compute loss function exponential (needed for derivatives)
hTheta :: [Double] -> [Double] -> Double
hTheta params dataList = (/) 1.0 $ 1.0 + (exp (-1 * (g params dataList)))

--Compute exponential in denominator of logistic function
g :: [Double] -> [Double] -> Double
g params dataList = sum $ zipWith (*) params ([1.0::Double] ++ (tail dataList))



import Test.Hspec
import Grad
import System.TimeIt

main :: IO ()
main = hspec $ do

  describe "Testing Gradient Descent" $ do
    it "Parallel - 100000 rows" $ do
        csvData <- getCSVData "data/test-5.csv"
        output <- timeItT $ (descendSteps "parallel" 64 csvData computeGradRowLinear [0,0] (1000::Int) 
(0.00000000000000001::Double)) `seq` return ()
        let computeTime = fst output
        print $ computeTime
        computeTime `shouldSatisfy` (<=(300.0::Double))

    it "Parallel - 10000 rows" $ do
        csvData <- getCSVData "data/test-4.csv"
        output <- timeItT $ (descendSteps "parallel" 64 csvData computeGradRowLinear [0,0] (1000::Int) 
(0.0000000000001::Double)) `seq` return ()
        let computeTime = fst output
        print $ computeTime
        computeTime `shouldSatisfy` (<=(10.0::Double))

    it "Sequential - 10000 rows" $ do
        csvData <- getCSVData "data/test-4.csv"
        output <- timeItT $ (descendSteps "sequential" 64 csvData computeGradRowLinear [0,0] (1000::Int) 
(0.0000000000001::Double)) `seq` return ()
        let computeTime = fst output
        print $ computeTime
        computeTime `shouldSatisfy` (<=(300.0::Double))

    it "Parallel - 1000 rows" $ do
        csvData <- getCSVData "data/test-3.csv"
        output <- timeItT $ (descendSteps "parallel" 64 csvData computeGradRowLinear [0,0] (1000::Int) (0.0000000001::Double)) 
`seq` return ()
        let computeTime = fst output
        print $ computeTime
        computeTime `shouldSatisfy` (<=(10.0::Double))

    it "Sequential - 1000 rows" $ do
        csvData <- getCSVData "data/test-3.csv"
        output <- timeItT $ (descendSteps "sequential" 64 csvData computeGradRowLinear [0,0] (1000::Int) 
(0.0000000001::Double)) `seq` return ()
        let computeTime = fst output
        print $ computeTime
        computeTime `shouldSatisfy` (<=(300.0::Double))

    it "Parallel - 100 rows" $ do
        csvData <- getCSVData "data/test-2.csv"
        output <- timeItT $ (descendSteps "parallel" 64 csvData computeGradRowLinear [0,0] (1000::Int) (0.0000001::Double)) 
`seq` return ()
        let computeTime = fst output
        print $ computeTime
        computeTime `shouldSatisfy` (<=(10.0::Double))

    it "Sequential - 100 rows" $ do



        csvData <- getCSVData "data/test-2.csv"
        output <- timeItT $ (descendSteps "sequential" 64 csvData computeGradRowLinear [0,0] (1000::Int) (0.0000001::Double)) 
`seq` return ()
        let computeTime = fst output
        print $ computeTime
        computeTime `shouldSatisfy` (<=(10.0::Double))


