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Abstract

The Boolean satisfiability problem, often referred to simply as SAT, is one of the
most fundamental problems in math and computer science. SAT is proven to be NP-
complete (and was, in fact, the first problem to be proven NP-complete [1]), but devel-
opment of more and more efficient SAT solving algorithms nevertheless continues, due
to the problem’s importance in computing applications such as automated planning,
automated reasoning, and model checking, in addition to its theoretical interest. As it
becomes increasingly difficult to make marginal improvements to existing algorithms
or extract better performance from single cores, parallel implementations of SAT al-
gorithms that can take advantage of today’s massively parallel systems become more
relevant. In this report, I present one such parallel implementation in Haskell of the
Davis–Putnam–Logemann–Loveland (DPLL) algorithm [2], which forms the basis of
all modern SAT solvers. I give experimental results that demonstrate my algorithm’s
ability to take advantage of multiple cores and achieve close to ideal speedup.

1 The SAT problem

1.1 Formulation

The SAT problem in its most general formulation asks whether the variables of a given
Boolean formula can be assigned to true or false in such a way that the entire formula
evaluates to true. If this is the case, the formula is called satisfiable. On the other hand,
if no such assignment exists, the formula is false for all possible variable assignments
and is called unsatisfiable. For example, the formula x ∧ ¬y is satisfiable if x = true and
y = false, while the formula x ∧ ¬x is unsatisfiable.

For simplicity, we assume that the Boolean formulas are given in conjunctive normal form
(CNF), that is, as a conjunction of clauses, where each clause is a disjunction of literals,
and each literal is either a boolean variable or it’s negation. For example, (x∨y)∧(¬x∨¬y)
is a CNF formula, while x ∨ (y ∧ z) is not.
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This assumption is safe to make, because every Boolean formula in propositional logic can
be converted to CNF in linear time on the size of the formula [3].

1.2 The DPLL algorithm

The Davis–Putnam–Logemann–Loveland (DPLL) algorithm has formed the backbone of
every competitive SAT solver for over 50 years. Modern optimizations have not changed
the core features of DPLL: guessing backtracking, and unit propagation.

The algorithm maintains a set of variable assignments which is initially empty.

The algorithm runs by guessing a variable value (assigning true or false to it), applying
unit propagation with the addditional variable assignment, and then recursively checking
if the formula is satisfiable under the guess and whatever other assignments were implied
by unit propagation.

Unit propagation proceeds as follows: If, due to the current variable assignments, all
literals but one in a clause are false, the unassigned literal must be assigned such that
it is true, and this assignment can be addded to the working set. Propagation can be
repeated with the new assignment, often leading to deterministic cascades of assignments,
thus avoiding a large part of the naive search space. Propagation may alternatively discover
that every literal in a clause is false, making the problem unsatisfiable. This is called a
conflict.

If propagation reports a conflict, the algorithm backtracks, undoing assignments until it
reaches the most recent guess. It then flips the value of the guess, and tries the same unit
propagation and recursion. If both the original guess and its negation result in conflicts,
the issue is with an earlier assignment, and the algorithm backtracks further. If there are
ever no earlier guesses to backtrack to, the whole problem is unsatisfiable.

2 Serial implementation

My implementation of DPLL in Haskell uses a central data structure called the Solution,
which maintains the set of current variable assignments:

data Choice = Guess { literal :: Int, visited :: Bool }

| Implication { literal :: Int }

deriving (Eq, Show)

type Trail = [Choice]

type Model = S.Set Int
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type Depth = Int

type Solution = (Trail, Model, Depth)

A Choice is either a guess or an implication, i.e. something which was discovered during
unit propagation; it is implied by the most recent guess. Choices store literals, which
are represented by integers (a positive integer is a true assignment to that variable, while
a negative integer is a false assignment). The Trail is a stack consisting of all of the
choices made thus far. The Model stores the same literals as the Trail as a set for efficient
membership checking. The depth stores how many guesses have been made.

The Solution is passed around in a State monad, and is updated exclusively through
push and pop operations.

The core of the algorithm is captured in three functions: dpll, propagate, and backtrack.

type Clause = [Int]

dpll :: [Clause] -> State Solution Bool

dpll cs = do

n <- next cs

case n of

Just i -> do

_ <- push $ Guess i False

propagate cs

Nothing -> return True

dpll accepts a list of clauses, where a Clause is just a list of integers representing literals.
The list of clauses is parsed from a DIMACS-cnf file passed to the command line.

The role of dpll is to guess some new unassigned variable and initiate propagation, or
return true if there are no more variables to assign, indicating the problem is satisfi-
able.

propagate :: [Clause] -> State Solution Bool

propagate cs = do

conflict <- unitPropagate cs

if conflict

then do

continue <- backtrack

if continue then propagate cs else return False

else dpll cs
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propagate functions mainly as a wrapper around unit propagation, that initiates back-
tracking if unit propagation caused a conflict, or calls dpll to make a new guess if there
are no conflicts.

The implementation details of unit propagation are not particularly interesting, so I elide
them here.

backtrack :: State Solution Bool

backtrack = do

choice <- pop

case choice of

Just (Guess i False) -> push $ Guess (negate i) True

Just _ -> backtrack

Nothing -> return False

backtrack pops assignments off the trail until it reaches a guess with the boolean value
false, indicating that the guess has not yet been negated. It pushes the negation and re-
turns true to restart propagation. It ignores already-negated guesses and any implications
from unit propagation. If the trail is empty, the entire problem is unsatisfiable.

3 Parallelization

3.1 Strategies and pitfalls

There are a few pieces of the DPLL algorithm I considered parallelizing. One is unit
propagation, since SAT solvers spend most of their runtime on unit propagation [4], and
for a sufficiently large number of clauses, a single unit propagation is a large enough chunk
of work to be worth splitting.

Unfortunately, parallelizing unit propagation turns out to require too much synchronization
between threads; if clauses are partitioned between threads, and examining a clause yields
a new assignment, all other threads will need to re-do their work taking the new assignment
into account, since clauses might yield a new implication or conflict.

The more promising avenue is to parallelize the solving of subproblems. Every time DPLL
needs to guess an assignment for x, it creates the subproblem of determining the satisfia-
bility of the clauses under the new x ++ trail. If this subproblem returns unsat, DPLL
tries again after flipping the variable assignment, ¬x.
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We can instead create two subproblems with each guess: one for both assignments x

and ¬x. We then execute both subproblems in parallel, backtracking only if both return
unsat. This approach, while realizable without any communication between threads, has
the disadvantage of being impossible to statically partition, because we ddon’t know ahead
of time which subproblems will be examined, or how long a given subproblem will take.
So new subproblems must be assigned to threads dynamically.

3.2 Parallel implementation

An advantage of implementing the parallel algorithm in Haskell is that Haskell’s runtime
has dynamic partitioning built-in, using the Eval monad and rpar function. Provided
the program is compiled with GHC’s --threaded option, rpar signals to Haskell that an
expression can be evaluated in parallel, using however many cores are available. Execution
of the program will continue unless rseq is used to wait on the value of the expression.

I parallelize the solving of subproblems as follows: whenever a guess of x is made, first
call rpar on a guess of ¬x, and then call rseq on the original guess. The program waits
on the result of the first guess, and if it returns sat, ignores the negated guess (which
Haskell will garbage collect). If the first guess returns unsat, the program waits on the
result of the negated guess, which was (at least partially) evaluated in parallel with the
first guess. Since the process is recursive, the number of potential sparks is O(2n), where
n is the number of boolean variables.

The modifications to the code are simple enough to print in full here:

dpll :: [Clause] -> State Solution Bool

dpll cs = do

n <- next cs

case n of

Just i -> do

m <- model

d <- depth

runEval $ bothBranches m d cs i

Nothing -> return True

bothBranches :: Model -> Int -> [Clause] -> Int -> Eval (State Solution Bool)

bothBranches m d cs i = do

let forwSt = ([Choice i True], S.insert i m, d + 1)

forkSt = ([Choice (negate i) True], S.insert (negate i) m, d + 1)

fork <- rpar $ force $ runState (propagate cs) forkSt

forw <- rseq $ runState (propagate cs) forwSt
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case forw of

(True, sol) -> return $ state (\(_, _, _) -> (True, sol))

(False, _) -> do

_ <- rseq fork

case fork of

(True, sol) -> return $ state (\(_, _, _) -> (True, sol))

(False, _) -> return $ return False

4 Evaluation

4.1 Benchmark set

I relied on two benchmark sets of files encoded in the DIMACS-cnf format used in SAT
competitions [5]. One set of ”easy” benchmarks consists of randomly-generated satisfiable
and unsatisfiable problems ranging from 25 to 2200 clauses and 10 to 180 boolean vari-
ables. These benchmarks are technically uninteresting, as most of them can be solved with
only a few unit propagations and minimal backtracking, and I used this set primarily for
debugging.

To evaluate the serial and parallel implementations, I used a second set of ”hard” bench-
marks consisting of a selection of problems from the SATLIB benchmark set (DUBOIS,
PHOLE, and AIM) specifically designed to challenge SAT solvers [6].

All of the hard benchmarks are unsatisfiable; since DPLL does not use heuristics to choose
literals or aggressively prune the search space, the metric of interest is how fast the parallel
algorithm can enumerate a large search space, and using unsatisfiable benchmarks ensures
the results do not depend on ”lucky” guesses from the algorithm.

4.2 Results

All of the results reported here were achieved on a 2018 Macbook Pro with a 2.9 GHz Intel
Core i9 processor and 6 logical cores. As such, my tests use at most 6 cores.

I tested a representative benchmark, dubois20.cnf, using different numbers of cores. The
parallel implementation with 1 core performs identically to the serial version of the pro-
gram, confirming that, in the absence of parallelism, their semantics are identical or nearly
identical.

Performance with multiple cores achieved nearly ideal speedup, with speedup falling off
slightly as the number of cores increases to the maximum (it’s possible that the machine
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Figure 1: Performance on dubois20.cnf with n cores

Cores 2 3 4 5 6

Speedup 202% 277% 373% 462% 510%

Figure 2: Average speedup with n cores on dubois20.cnf relative to serial DPLL

needed some processing power for other applications, and that the actual average speedup
for 5 or 6 cores could be higher than recorded).

Experiments showed a similar speedup on all of the hard benchmarks, for which I compared
runtimes between 1 core and 6 cores. Anticipating a high number of sparks, I addditionally
tracked how the runtime system was handling them.

We observe a large number of garbage collected sparks and a small number of converted
sparks, which is natural given that any time an initial guess is correct, every single spark
created for the negated guess is discarded. The number of converted sparks also gives us
an idea of the variability in how much backtracking is required relative to the size of the
SAT instance (measured as the number of boolean variables).

As the number of sparks increases exponentially as the size of the problem increases, for
harder problems a limit on the trail depth at which sparks are created may be neccessary.
This is an area for future exploration - although my implementation tracks guess depth,
the value goes unused.
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Figure 3: Serial vs 6-core performance on dubois benchmarks

Benchmark dubois20.cnf dubois21.cnf dubois22.cnf

Size 60 63 66

Sparks 2099101 4200643 8393092

GC’d 2053111 4112034 8236800

Converted 190 518 373

Work Balance 84.96% 85.82% 86.15%

Figure 4: Runtime statistics on select benchmarks using 6 cores

Overall, given the simplicity of the change to the algorithm, the speedup exceeded my
expectations. It is clear that dynamically partitioning subproblems is an incredibly effective
means of parallelizing DPLL which scales to higher numbers of cores.

5 Conclusion

5.1 Summary

I implemented serial and parallel versions of the DPLL algorithm for solving the Boolean
satisfiability problem in Haskell. The parallel algorithm used Haskell’s Eval monad to
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parallelize the serial implementation with minimally invasive changes, with creating, ap-
portioning, and garbage collecting threads handled by the Haskell runtime.

The parallel algorithm achieved close to ideal speedup on competition benchmarks, showing
the effectiveness and scalability of the parallelization.

5.2 Future Work

Modern SAT solvers use conflict-driven clause learning (CDCL), an implementation of
DPLL that additionally analyzes each conflict in order to learn new clauses at runtime
and perform non-chronological ”back-jumping” [7]. These solvers are more powerful than
standard DPLL, and a further direction for this project is to explore how CDCL can
be parallelized. The addition of clause learning would require frequent synchronization
between threads and introduce significant overhead to a parallel algorithm. Developing
a parallel CDCL algorithm that surmounts these hurdles and incorporates other modern
trappings such as portfolio-based solving would bring my work here more in line with the
state-of-the-art in efficient SAT solving.
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7 Program listing

The serial and parallel implementations share most of their code, but I have included both
here for completeness.
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7.1 sat-serial.hs

import System.Environment

import Control.Monad.State

import qualified Data.List as L

import qualified Data.Set as S

------------------------------

-- Monadic assignment trail --

data Choice = Guess { literal :: Int, visited :: Bool }

| Implication { literal :: Int }

deriving (Eq, Show)

type Trail = [Choice]

type Model = S.Set Int

type Depth = Int

type Solution = (Trail, Model, Depth)

pop :: State Solution (Maybe Choice)

pop = state pop’

where pop’ (x@(Guess i _):xs, m, d) = (Just x, (xs, S.delete i m, d - 1))

pop’ (x@(Implication i):xs, m, d) = (Just x, (xs, S.delete i m, d))

pop’ s@([], _, _) = (Nothing, s)

push :: Choice -> State Solution Bool

push x@(Guess i _) = state (\(xs, m, d) -> (True, (x:xs, S.insert i m, d + 1)))

push x@(Implication i) = state (\(xs, m, d) -> (True, (x:xs, S.insert i m, d)))

model :: State Solution Model

model = (\(_, m, _) -> m) <$> get

printSolution :: Solution -> IO ()

printSolution (_, m, _) = putStrLn $ "Sat\n" ++ (unwords $ map show $ S.elems m)

----------------------

-- Unit propagation --
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type Clause = [Int]

data Status = Safe | Conflict | Implies [Int] deriving (Eq, Show)

litStatus :: S.Set Int -> Int -> Status

litStatus m i

| S.member i m = Safe

| S.member (negate i) m = Conflict

| otherwise = Implies [i]

clauseStatus :: S.Set Int -> Clause -> Status

clauseStatus _ [] = Conflict

clauseStatus m (i:is) = case litStatus m i of

Safe -> Safe

Conflict -> continue

imp -> if continue == Conflict then imp else Safe

where continue = clauseStatus m is

status :: S.Set Int -> [Clause] -> Status

status _ [] = Safe

status m (c:cs) = case clauseStatus m c of

Safe -> continue

Conflict -> Conflict

Implies [i] -> case continue of

Implies is -> if negate i ‘elem‘ is then Conflict else Implies (i:is)

Safe -> Implies [i]

Conflict -> Conflict

_ -> error "bad Implies"

where continue = status m cs

unitPropagate :: [Clause] -> State Solution Bool

unitPropagate cs = do

m <- model

case status m cs of

Safe -> return False

Conflict -> return True

Implies is -> do mapM_ (push . Implication) $ L.nub is

unitPropagate cs

-------------------------

-- Core DPLL algorithm --
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backtrack :: State Solution Bool

backtrack = do

choice <- pop

case choice of

Just (Guess i False) -> push $ Guess (negate i) True

Just _ -> backtrack

Nothing -> return False

propagate :: [Clause] -> State Solution Bool

propagate cs = do

conflict <- unitPropagate cs

if conflict

then do

continue <- backtrack

if continue then propagate cs else return False

else dpll cs

next :: [Clause] -> State Solution (Maybe Int)

next cs = do

m <- model

let assigned i = S.member i m || S.member (negate i) m

return $ L.find (not . assigned) (concat cs)

dpll :: [Clause] -> State Solution Bool

dpll cs = do

n <- next cs

case n of

Just i -> do

_ <- push $ Guess i False

propagate cs

Nothing -> return True

-------------------------

-- Preprocessing steps --

unfalsifiable :: Clause -> Bool

unfalsifiable c = (length $ L.nub $ map abs c) /= (length c)

sanitize :: [Clause] -> [Clause]

sanitize cs = L.sortOn length $ filter (not . unfalsifiable) $ L.nub cs
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-------------

-- Parsing --

cnfToClauses :: [String] -> [Clause]

cnfToClauses cnf = map (L.nub . init . map read . words) cnf

parseCnf :: String -> IO [Clause]

parseCnf f = cnfToClauses . tail . lines <$> readFile f

main :: IO ()

main = do

args <- getArgs

case args of

[f] -> do

cs <- parseCnf f

case runState (dpll $ sanitize cs) ([], S.empty, 0) of

(False, _) -> putStrLn "Unsat"

(True, sol) -> printSolution sol

_ -> putStrLn "Usage: ./sat-serial file.cnf"

7.2 sat-parallel.hs

import System.Environment

import Control.Monad.State

import Control.DeepSeq

import Control.Parallel.Strategies

import qualified Data.List as L

import qualified Data.Set as S

------------------------------

-- Monadic assignment trail --

data Choice = Choice { literal :: Int, visited :: Bool }

| Implication { literal :: Int }

deriving (Eq, Show)

instance NFData Choice where

rnf (Choice i v) = rnf i ‘seq‘ rnf v
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rnf (Implication i) = rnf i

type Trail = [Choice]

type Model = S.Set Int

type Solution = (Trail, Model, Int)

pop :: State Solution (Maybe Choice)

pop = state pop’

where pop’ (x@(Choice i _):xs, m, d) = (Just x, (xs, S.delete i m, d - 1))

pop’ (x@(Implication i):xs, m, d) = (Just x, (xs, S.delete i m, d))

pop’ s@([], _, _) = (Nothing, s)

push :: Choice -> State Solution Bool

push x@(Choice i _) = state (\(xs, m, d) -> (True, (x:xs, S.insert i m, d + 1)))

push x@(Implication i) = state (\(xs, m, d) -> (True, (x:xs, S.insert i m, d)))

model :: State Solution Model

model = (\(_, m, _) -> m) <$> get

depth :: State Solution Int

depth = (\(_, _, d) -> d) <$> get

printSolution :: Solution -> IO ()

printSolution (_, m, _) = putStrLn $ "Sat\n" ++ (unwords $ map show $ S.elems m)

----------------------

-- Unit propagation --

type Clause = [Int]

data Status = Safe | Conflict | Implies [Int] deriving (Eq, Show)

litStatus :: S.Set Int -> Int -> Status

litStatus m i

| S.member i m = Safe

| S.member (negate i) m = Conflict

| otherwise = Implies [i]

clauseStatus :: S.Set Int -> Clause -> Status

clauseStatus _ [] = Conflict

clauseStatus m (i:is) = case litStatus m i of

Safe -> Safe
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Conflict -> continue

imp -> if continue == Conflict then imp else Safe

where continue = clauseStatus m is

status :: S.Set Int -> [Clause] -> Status

status _ [] = Safe

status m (c:cs) = case clauseStatus m c of

Safe -> continue

Conflict -> Conflict

Implies [i] -> case continue of

Implies is -> if negate i ‘elem‘ is then Conflict else Implies (i:is)

Safe -> Implies [i]

Conflict -> Conflict

_ -> error "bad Implies"

where continue = status m cs

unitPropagate :: [Clause] -> State Solution Bool

unitPropagate cs = do

m <- model

case status m cs of

Safe -> return False

Conflict -> return True

Implies is -> do mapM_ (push . Implication) $ L.nub is

unitPropagate cs

-------------------------

-- Core DPLL algorithm --

backtrack :: State Solution Bool

backtrack = do

choice <- pop

case choice of

Just (Choice i False) -> push $ Choice (negate i) True

Just _ -> backtrack

Nothing -> return False

propagate :: [Clause] -> State Solution Bool

propagate cs = do

conflict <- unitPropagate cs

if conflict

then do
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continue <- backtrack

if continue then propagate cs else return False

else dpll cs

next :: [Clause] -> State Solution (Maybe Int)

next cs = do

m <- model

let assigned i = S.member i m || S.member (negate i) m

return $ L.find (not . assigned) (concat cs)

bothBranches :: Model -> Int -> [Clause] -> Int -> Eval (State Solution Bool)

bothBranches m d cs i = do

let forwSt = ([Choice i True], S.insert i m, d + 1)

forkSt = ([Choice (negate i) True], S.insert (negate i) m, d + 1)

fork <- rpar $ force $ runState (propagate cs) forkSt

forw <- rseq $ runState (propagate cs) forwSt

case forw of

(True, sol) -> return $ state (\(_, _, _) -> (True, sol))

(False, _) -> do

_ <- rseq fork

case fork of

(True, sol) -> return $ state (\(_, _, _) -> (True, sol))

(False, _) -> return $ return False

dpll :: [Clause] -> State Solution Bool

dpll cs = do

n <- next cs

case n of

Just i -> do

m <- model

d <- depth

runEval $ bothBranches m d cs i

Nothing -> return True

-------------------------

-- Preprocessing steps --

unfalsifiable :: Clause -> Bool

unfalsifiable c = (length $ L.nub $ map abs c) /= (length c)

sanitize :: [Clause] -> [Clause]
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sanitize cs = L.sortOn length $ filter (not . unfalsifiable) $ L.nub cs

-------------

-- Parsing --

cnfToClauses :: [String] -> [Clause]

cnfToClauses cnf = map (L.nub . init . map read . words) cnf

parseCnf :: String -> IO [Clause]

parseCnf f = cnfToClauses . tail . lines <$> readFile f

main :: IO ()

main = do

args <- getArgs

case args of

[f] -> do

cs <- parseCnf f

case runState (dpll $ sanitize cs) ([], S.empty, 0) of

(False, _) -> putStrLn "Unsat"

(True, sol) -> printSolution sol

_ -> putStrLn "Usage: ./sat-parallel file.cnf"
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