COMS 4995

Parallel Functional Programming

Backgammon with

Parallelized Expectiminimax and
Forward Pruning

Tejit Pabari (tvp2107)
Archit Choudhury (ac4385)

December 23, 2020

Introduction

Backgammon is a two-player game where each player has fifteen pieces that move between
twenty-four triangles based on dice roll. The objective of the game is to be the first to move all
your fifteen checkers off the board.

Detailed rules can be found at the Wikipedia Page

Problem Formulation

The game is similar to a 2 player zero-sum game. The possible moves at each step can be
represented on a tree, based on the dice role and the current state of the board. The tree can be
searched using an expecti minimax algorithm to find the best possible next move. A couple of
heuristics can also be applied to improve calculations and optimize the algorithm, such as
alpha-beta pruning and forward pruning. All these could be parallized, which would improve
the performance of the algorithm.

Since the search tree is big, we can’t find an exact answer. Again, quite similar to chess. So we
could experiment with different tree depths, and the time it takes to perform the operations on
1 core. Following this, we can gradually increase the core count, and see how that affects the
time taken to perform the same operation.

https://en.wikipedia.org/wiki/Backgammon#Rules

Implementation

Data Type Definitions

We used a couple of custom data types, which we would explain here

Die, Dice

Each Die is an Int and Dice is a pair of Die, i.e. (Die, Die)

Chip, Side
A chip is an Int, and denotes the number of pieces on each triangle of the board.
A side is either Black or White, denoting the side the player is playing on.

Point

A point is of Either type and is a tuple of (Side, Chip). Hence, it essentially denotes a triangle in
the game board, with the number of chips of a given side present on it.
Note: This also defines an important part of the game that no triangle can have chips of two sides on it

Move

Move denotes a player's move on the board. It can be of 3 types, in order of their priorities

1. Enter - Enter your piece from the bar

2. BearOff - Bear off your piece, bringing you closer to winning

3. Move - Move your pieces in the board
If there are chips on the bar, BearOff is the only possible move. If you have a chance to BearOff at any
point, you would definitely take it because it brings you closer to winning. Hence, these two specific
move types have been separated.

Game State

At any point, the game can be in any of these states. Each state is followed by an action from

the player (or AI)
1. ToMove Side Dice - Prompting player to Move from one position to another
2. ToThrow Dice - Prompting player to throw dice

3. GameFinished Side - Notes end of game, and what side won
4. PlayersToThrowlnitial - Initial throws, which doesn’t fit into any of the above types

Plaver Decision

Based on the game state, a player can decide to do these actions
1. Moves [Move] - A list of moves to move (you have multiple moves per turn)
2. Throw Dice - Throw adice

Invalid Decision Type

These are just some error checks for invalid decisions done by the player
1. NoPieces Pos - Player moves from a position without pieces
2. MovedOntoOpponentsClosedPoint Pos - Player moved onto opponent’s triangle (with
more than 1 opponent's piece)
3. NoBarPieces Side - No bar pieces present

Game Action

Action during a game comprises a player decision. This is a wrapper for this. It also includes an
initial throw action, which is not a regular player decision move.

Invalid Action

An action can either be invalid for a given state of the game, or it can be invalid because of a
player decision taken or an invalid initial throw. This is also a wrapper for Player decision

Board

A board consists of Points, Int, Int - showing each triangle on the board, along with the pieces
on bar for White, and pieces on bar for Black side respectively (the two ints)

Game

Finally, a game shows the game board, game action and game state at any given point. Hence,
it is sort of a bookkeeping method to ensure correct gameplay throughout.

data Game = Game { gameBoard :: Board,
gameActions :: [GameAction],
gameState :: GameState}

Important Function Definitions

Move

Def = move :: Side -> Board -> Move -> Either InvalidDecisionType Board
Moves the pieces on the board, given the player side, board and single move
Returns the new board, or an invalid decision take by the player.

Handles all move types

Legal Moves

Def = legalMoves :: Board -> Dice -> Side -> [[Move]]
Calculates all possible legal moves of the player at a current point, given the board, the dice roll
and the side of the player.
Order of calculation:
1. Bar moves
2. Bear Off moves
3. Other regular moves

Perform Action

Def = performAction :: GameAction -> Game -> Either InvalidAction Game

Given a game action (Initial Throw, Move, Throw), and a game (game state actually, it takes the
game and extracts the current state from it), it matches the appropriate state with the action
and performs the given action, or returns an invalid matching (for example, if game state is
ToThrow and player says perform move action - that is invalid)

Game Play
Def = gamePlay :: Side -> p1 -> p2 -> Int -> {bestMove Func def} -> Either InvalidAction Game
These values are just passed on to the {bestMove Func}
- Plisdepth, P2 is pruning depth
- Intisthe seed,
- {bestMove Func def} is the method of selecting the move (random or using
expectiminimax)
Given a side, this function essentially auto plays the game.

Sequential Solution

Eval Function

Evaluates the current board, for the given side (player) and assigns a value to the board. This
value is compared to select the best move for the player.
Eval = homeChips + 10 * homeWin - distance - 10 * barWeight - opponentChips where

- homeChips = number of chips on the home board

(triangles 1..6 for black, triangles 19..24 for white)

- homeWin = number of chips that the player has BearedOff

- distance = weighted sum of how far each piece of the player is from being BearedOff

- barWeight = number of chips on the bar

- opponentChips = number of chips of the opponent present on their home board

Forward Pruning

Reduces the number of moves to k (some small number) after sorting them, so that only those
k (pruning_depth) moves are tabulated. This allows for faster calculation, as we don’t need to
explore every move and choose only those ones that have the best possibility to explore
Pseudocode -
For mv < (all moves for given board, side)

Evaluate mv using eval
Sort moves in descending order by the evaluated values
Return k best (top k values)

Expectinode

Calls minimax on all possible dice moves and returns the sum of min or max
Pseudocode -
For dice rolls < (all possible dice rolls)
Calculate Multiplier * (func_value board,side,dice_roll)
(where Multiplier is number of dice combinations
If side explored currently == player_side — func_value=max_func

Otherwise — func_value=min_func
Return sum of all the calculated values

Minimax

Minimize or maximize the evaluated value for the player by calling expectinode with an
increase in depth.

If the current turn is the current player’s, we use maximize, that calls expectinode with
(depth-1) and (opposite side). Expectinode will be minimized, since we want to minimize the
value of the opponent's next move (which the AI calculates based on our current move player’s

current move). Minimize calls expectinode again with (depth-1) (opposite side - now the same
as players), which calls maximize.
Thus, we get a cycle of minimize and maximize, going through expectinode each time - called
minimax. The algorithm cycles through till 0 depth is reached.
Pseudocode
For mv < (forwardPruning (all legal moves for board,side,dice))

newBoard < perform the move

Opponent <« opposite side

Value < Expectinode newBoard,opponent, (depth-1)
Return minimum of all values

Alpha Beta Pruning
The algorithm performs alpha beta pruning in minimax.

MAK
MIN

MAX

MIN

MAX

Example of Alpha Beta Pruning. Source: Wikipedia.org
Alpha beta pruning is an adversarial search algorithm and seeks to decrease the number of

nodes evaluated by minimax algorithm. The idea behind it is to keep track of alpha and beta
values that the minimizing and maximizing algorithm are sure of, that any value crossing those
bounds would definitely mean that the move is selected.

Initially, alpha is negative infinity and beta is positive infinity, i.e. the worst possible values.
Whenever the maximum score that the minimizing player (i.e. the "beta" player) is assured of
becomes less than the minimum score that the maximizing player (i.e., the "alpha" player) is
assured of (i.e. beta < alpha), the maximizing player need not consider further descendants of
this node, as they will never be reached in the actual play".

Best Move

The best move function starts off the calculation for best moves by calling expectiminimax.
Pseudocode:
For mv < (forwardPruning (all legal moves for board,side,dice))
Value < Expectinode board,side,dice_roll,depth
Return best move in (sorted values,moves in descending order)

1"Alpha-Beta Pruning." Wikipedia: The Free Encyclopedia. Wikimedia Foundation, Inc. 18 Dec. 2020.
Web. 22 Dec. 2020, en.wikipedia.org/wiki/Alpha%E2%80%93beta_pruning

Parallel Solution

Expectinode

We first parallelized expectinode, since that was a direct application of parallelism in this
program

Sequential Version

sumAllDice func = sum [(multiplier diceRoll)*(func board side currSide
diceRoll alpha beta depth pruningDepth) | diceRoll <- allDiceRolls]

Parallel Version

sumAllDice func = map
(\diceRoll -> (multiplier diceRoll) *

func board side currSide diceRoll alpha beta depth pruningDepth)
allDiceRolls "using ™ parlList rdeepseq

Here, func is either minimize or maximize based on the current side and the player side
We used rdeepseq since the values have to be evaluated till the end

Expectinode + BestMove + Minimax - Alpha-Beta Pruning

We also removed alpha-beta pruning and parallelized bestMove and minimax algorithms, to
see if we improved performance that way as well. We had to remove pruning because it
interferes with parallelization, as values are updated every time. Removing it doesn't affect the
output, as it only means exploring more nodes.

BestMove Sequential Version

bestMove' [] _ bestMoveA = bestMoveA

bestMove' (mv:mvs) bestScore bestMoveA = case (performMoves board side mv)
of .

Where performMoves performs the move on the board, returns a new board and the algorithm
then calculates the value for the move using

expectiRes = expectinode newBoard side (opposite side)

BestMove Parallel Version

bestMovePar' mvs = snd $ head $ sortBy (\x y -> compare (fst x) (fst y))
(bestMoveParAll mvs)
bestMoveParAll mvs = map innerFunc mvs “using parlList rdeepseq

Here, innerFunc performs the moves and calls expectinode on the newBoard

Maximize Sequential Version (Minimize is the same, except minimum value is calculated)

minValue' [] _ _ bestScore = bestScore

minValue' (mv:mvs) al bt bestScore = case (performMoves board currSide mv)
of ...

Minimize/Maximize and bestMove algorithms are similar, except they return value and move
respectively

Here as well, performMoves performs the move on the board, returns a new board and the
algorithm then calculates the value for the move using

expectiRes = expectinode newBoard side (opposite currSide) (depth-1)

Maximize Parallel Version

minValuePar' mvs = fst $ head $ sortBy (\x y -> compare (fst x) (fst y))
(minValueParAll mvs)
minValueParAll mvs = map innerFunc mvs “using parlList rdeepseq

Here, innerFunc performs the moves and calls expectinode on the newBoard

Evaluation

Evaluation Strategy

We ran the three different versions of the algorithm (sequential, parallel and parallel without
Alpha-Beta Pruning) for

- Depths 1 and 2 (any higher and the algorithm takes way too long to run)

- For each depth, we ran it for 5 pruning depths 1..5

- For each (depth,pruning_depth) combination, we ran the parallel version over 2..4
cores (1 would be the same as sequential)

- For each (depth, pruning_depth, core) combination, we ran it 10 times with different
seeds (seed controls randomness in the program which means dice roll and choosing of
random moves as well for the opponent).

We averaged the results for each of the 10 seed runs, for each depth, pruning_depth,
core combination

Results

We present results for depth=2 only, as depth=1 is too shallow and doesn't give consistent
results.

We first present our data, and then explore the results through graphs to gain a better
understanding of them.

Results - Depth=2

prog_type core pruning_depth

Par

ParNP

Seq

a b~ 0N a A WO N =2 0O > DN a b~ 0N

a » W0 N

Time

1.5446
6.701
14.3257
24.8077
39.9636
1.4652
6.3282
13.5483
22.8422
38.2837
1.4499
6.083
12.6969
21.6451
35.7576
1.5178
5.864
13.8561
24.7526
46.7718
1.4625
5.597
12.9771
23.2512
44,7322
1.4539
5.3892
12.3983
22.0413
43.2612
3.6135
15.8631
34.1666
58.0969
95.8851

Total Sp
8870.4
30756.6
67015.2
111415.5
162399.3
8870.4
30901.5
67174.8
111558.3
162527.4
8870.4
31128.3
67526.2
111881.7
162760.5
17760
94363.6
267083.5
535483.3
932551.7
17760
94364.2
267083.6
535483.7
932551.8
17760.1
94363.7
267083.9
535512.2
932552.1
0

0
0
0
0

Converted Sp
636
11015.3
22836.5
31846.9
39623.8
1550.9
12346.8
26333
40514.9
54162.4
2613.7
13635.4
29879.4
47041.3
64856.9
627.8
3454
613.6
505
583.9
1565.5
19514
1402.9
2016.5
2235
2029.6
3763.6
3935.9
32494
4590.3
0

0
0
0
0

GC'D Sp
1384.8
2709.8
4677.2
7085.6

8639
1230.5
2397.8
3650.6
5932.9
6945.8
1088.6
2609.8
4109.3
6379.8
7584.7
8546.5

61825.2
194971.7
415814.9
749703.6
77525
58374.6
191290.7
407571.1
738500.2
6895.3
55136.1
186778.2
407308.5
735479.2
0

0
0
0
0

Fizzled Sp
6849.6
17031.5
39501.5
72483
114136.5
6089
16156.9
37191.2
65110.5
101419.2
5168.1
14883.1
33537.5
58460.6
90318.9
8585.7
32193
71498.2
119163.4
182264.2
8442
34038.2
74390
125896.1
191816.6
8835.2
35464
76369.8
124954.3
192482.6
0

0
0
0
0

Analysis

Total Sparks
sparks tot Depth-2

—e— Par-C2
—e— Par-C3
8000001 —e— Par-C4
+— ParNP-C2
—e— ParNP-C3
600000 ParNP-C4
—e— Seq

400000

sparks_tot

200000

1 2 3 a 5
Pruning Depth

The number of sparks are most for the parallel version without alpha beta pruning, since it
evaluates every node till its full depth. It also increases with an increase in pruning depth, as
higher depth means less nodes pruned.

Converted Sparks

sparks cov Depth-2

—e— Par-C2
600001 —— Par-C3
—— Par-C4
50000 * ParNP-C2
—e— ParNP-C3
ParNP-C4
—e— Seq

40000

30000

sparks_cov

20000

10000

3 4 5
Pruning Depth

=
oA

Number of converted sparks increases with increase in pruning depth. It is also the best for the
parallel version with alpha-beta pruning, increasing with more core, as the version without
pruning has a lot more nodes that fizzle out in forward pruning

GC Sparks
sparks gc Depth-2

—e— Par-C2
700000y —e— Par-C3
—e— Par-C4
6000001 —e— PparNP-C2
—e— ParNP-C3
500000 1 ParNP-C4
—e— Seq
400000 1

300000 1

sparks_gc

200000 1

100000 1

Pruning Depth

GC is almost the same for all parallel strategies

Fizzle Spark

sparks fizzle Depth-2

200000 {
—e— Par-C2

1750001 —*— Par-C3
—e— Par-C4
1500004 —*— ParNP-C2
—e— ParNP-C3
125000 { ParNP-C4
—e— Seq
100000 1

75000 1

sparks_fizzle

50000 1

25000 1

0

1)

Pruning Depth

The number of sparks fizzled increases with pruning depth, which makes sense as more nodes
are kept in forward pruning. Sparks fizzled are also higher in the version without alpha-beta
pruning, because there are many nodes that are made, however, not evaluated due to forward
pruning.

Run time

real time Depth-2

100
—— Par-C2
—— Par-C3
g0l Par-C4
*— ParNP-C2
—e— ParNP-C3
60 ParNP-C4
)] —— Sg
£]
hy
© 40
20
0 &

1 2 3 4 5
Pruning Depth
This graph shows a clear distinction between sequential and parallel versions of the program
and we get an increase of almost double while using the sequential version. There is not much
difference between the pruning and non-pruning version, however, we start to see the
difference with an increase in the pruning depth. I think if we continue to increase the pruning
depth, or not do forward pruning at all, we would have a substantial increase in run time.

Threadscope

Parallel Version

Aty

<1

[21

All cores are almost equally used.

b

11.33

HEGO

Spar cromon
a0 (Spridm) g

0
11.33

HEG 1

‘Spark croaton
e (SpriiTS) g o

0
11.33

HEG2

Spark reation
a0 ki) g o

0
11.33

HEGS

‘Spark creation
a0 SprmS) g

8 T O i 5

|

Spark creation is also the same throughout, except the end since that is where the program
terminates, and hence almost all nodes come to an end. Looking at spark creation closely:

NPTV e SIS QU I Py ST YRRy W Y (VSN QP Epgunpey

L1s 34.2s 34.3s 34.4s 34.55 3468 347s 34.8s 34.9s |355 35.1s 3628 36.3s 36.4s
! L L | L L ! i ! L L ! Il

11.33
HECO

Spark reation
e GpaInS) o oo
0

11.33
HEC 1

(spariims) 5.66

0
11.33

Heo?

Spark reation
i) ¢ e |
0

11.33
HECS

e ey
e 5,66

0

Sparks are created sparsely, since there is a lot of sequential code that is to be done, between
each game/within a game as well

Parallel NP Version (No Alpha-Beta Pruning)

All cores are almost equally used here as well

0s 5s. 10s 15s. 20s 25s

&
|

HECO

Sprkcoatin
o lin) 57 32

0 -
7464

30s
L
HEG1
‘Spark reation
T sprkme) 7 0
0 il ctndh -

{0 i |

7464
HeC 2

‘Spark creaion
= e o7

e ol W A

o g -

74.64
HECS

Sparkcresion
i) 57

° .

There is a high amount of spark creation at the end, which overshadows the rest of the graph.
Looking at it closely

22.255 223s 22.358 22.4s 22.45s 2255 22558 2265 22,655 22.7s

| O O | O O [S |

1464
HECO
Spark reaton
OIS 57 0y

0
74.64

HEC 1

Sparccreson
e GkimS) g 0y

0
7464
HEC2

Spark reston
ORI o7 9

L4 d 4 M s sadandah bo Al oai Mol meod ohdie | 4 M Ak a4

0
7464
HECS

‘Spark creation
e (perkims) o5 0

1 S g g g

N S TN N I I VR 'Y U ST W I WPV YA

The sparks created are less sparse, since sparks are now also created instead of sequential

0
7464 —

alpha-beta pruning.

Code Listing

We have four files

- Backgammon.hs - Helper module

- BackSeq.hs - Module containing sequential implementation of functions
- BackPar.hs - Module containing parallel implementation

- BackParNP.hs - Module containing parallel, No Pruning implementation

The first module is just a helper module. To compile the modules:
- BackSeq.hs -stack ghc -- BackSeq.hs -threaded -rtsopts -eventlog
- BackPar.hs -stack ghc -- BackPar.hs -threaded -rtsopts -eventlog
- BackParNP.hs- stack ghc -- BackParNP.hs -threaded -rtsopts -eventlog

To run the modules, pass the depth, pruningDepth and seed (can be any integer):

- BackSeq.hs -./BackSeq Black $depth $pruningD $seed +RTS -N4 -s -1s

- BackPar.hs - ./BackPar Black $depth $pruningD $seed +RTS -N4 -s -1s

- BackParNP.hs- ./BackParNP Black $depth $pruningD $seed +RTS -N4 -s -1s
For example:

- ./BackSeq Black 1 2 10 +RTS -N4 -s -1s

- ./BackPar Black 2 1 4 4+RTS -N4 -s -1s

- ./BackParNP Black 2 3 7 +RTS -N4 -s -1s

Backgammon.hs

Helper module, contains all functions for gameplay

{-
Helper module, that contains all functions required
for the gamePlay

-}

{-# LANGUAGE DeriveGeneric, DeriveAnyClass #-}

module Backgammon (
Die, Dice, Side(Black, White), Point, Move, Board, Game,
GameAction, PlayerDecision, GameState,
InvalidAction, InvalidDecisionType,
initialBoard, boardTestl, bearOffBoard, barBoard,
opposite, getChip, allDiceRolls,
move, legalMoves, performAction, performMoves,
gamePlay, eval, forwardPruning

)

where

-- import Debug.Trace(trace)

import Control.Monad (foldM)

import qualified Data.Set as Set

import qualified System.Random as R (mkStdGen, randomRs)

import Data.List(sortBy)

import Control.DeepSeq(NFData)

import GHC.Generics (Generic)

type Die = Int
type Dice = (Die, Die)

-- Number of pieces in a triangle
type Chip = Int
data Side = White | Black
deriving (Eq, Show, Read)
-- Triangle with number and type of pieces
type Point = Maybe (Side, Chip)
type Points = [Point]

type Pos = Int
-- Move from to
data Move = Move Pos Pos

| Enter Pos Pos
| BearOff Pos Pos
deriving (Eq, Show, Ord, Generic, NFData)
-- type Moves = [Move]

-- Either first dice throw to determine who starts
-- Or an action by player
data GameAction = PlayerAction Side PlayerDecision
| InitialThrows Die Die
deriving (Eq, Show)

-- Two play actions possible Move or Throw
data PlayerDecision = Moves [Move]
| Throw Dice
deriving (Eq, Show)

-- Initial throw, 2 player decitions and game end
data GameState = PlayersToThrowInitial

| ToMove Side Dice

| ToThrow Side

| GameFinished Side

deriving (Eq, Show)

-- Error checks
data InvalidDecisionType = NoPieces Pos
| MovedOntoOpponentsClosedPoint Pos
| NoBarPieces Side
deriving (Eq, Show)

-- Error checks
data InvalidAction = ActionInvalidForState GameState GameAction
| InvalidPlayerDecision Game PlayerDecision
InvalidDecisionType
deriving (Eq, Show)

-- triangles and chips, barWhite, barBlack
data Board

= Board Points Int Int

deriving (Eq, Show)

-- Storing game at every turn
data Game = Game { gameBoard :: Board,
gameActions :: [GameAction],

gameState :: GameState}
deriving (Eq)

instance Show Game where
show game = "Game Board: ++ show board ++
"\n\nGame Actions: " ++ show actions ++
"\n\nGame State: " ++ show state where
board = gameBoard game
actions = if (length gActions >=6)
then (show $ take 3 gActions) ++ ".......... " ++ (show ¢
takelLast 3 gActions)
else show gActions
state = gameState game
gActions = gameActions game

-- splitComm xs = split xs ',

-- split :: String -> Char -> [String]
-- split [] delim = [""]

-- split (c:cs) delim

-- | ¢ == delim = "" : rest
-- | otherwise = (c : head rest) : tail rest
-- where

-- rest = split cs delim

-- Start with this board
initialBoard :: Board
initialBoard = Board [Nothing, Just (White, 2), Nothing, Nothing, Nothing,
Nothing, Just (Black, 5), Nothing, Just (Black, 3), Nothing, Nothing,
Nothing, Just (White, 5),

Just (Black, 5), Nothing, Nothing, Nothing, Just
(White, 3), Nothing, Just (White, 5), Nothing, Nothing, Nothing, Nothing,
Just (Black, 2), Nothing

100

-- Can try bearing off with this board
-- Bear off Black 1 dice roll, Black 2 dice roll, Black 1,2 dice rolls
bearOffBoard :: Board
bearOffBoard = Board [Nothing, Nothing, Just (Black, 3), Nothing, Nothing,
Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing,
Nothing, Nothing, Nothing, Nothing, Nothing, Nothing,
Nothing, Nothing, Nothing, Nothing, Nothing, Just (White, 2), Nothing
] oo

-- Board with black chips on bar
-- Call with dieroll 2
barBoard :: Board
barBoard = Board [Nothing, Nothing, Just (Black, 3), Just (White, 3),
Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing,
Nothing,

Nothing, Nothing, Nothing, Nothing, Nothing, Nothing,
Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing

] 02

-- Random Test Board
boardTestl :: Board
boardTestl = Board [Nothing, Just (Black, 2), Just (Black, 5), Just
(White, 1), Just (Black, 2), Nothing, Nothing, Nothing, Nothing, Nothing,
Nothing, Nothing, Nothing,

Nothing, Nothing, Nothing, Nothing, Nothing, Nothing,
Just (White, 5), Nothing, Just (White, 2), Just (White, 5), Just (Black,
1), Just (White, 2), Nothing

] 00

-- Test Board with elements in endzone
endBoard :: Board
endBoard = Board [Nothing, Just (White,1), Nothing, Nothing, Nothing,
Nothing, Just (Black, 5), Nothing, Just (Black, 3), Nothing, Nothing,
Nothing, Just (White, 5),

Just (Black, 5), Nothing, Nothing, Nothing, Just (White,
3), Nothing, Just (White, 5), Nothing, Nothing, Nothing, Nothing, Just
(Black, 2), Nothing

] 00

allDiceRolls :: [Dice]
allDiceRolls = [(i,j) | i <- [1..6], j <- [i..6]]

——————————————— Helper Functions ---------------
-- Take the last n elements from xs

takeLast :: Int -> [a] -> [a]

takeLast n xs = drop (length xs - n) xs

newGame :: Game
newGame = Game initialBoard [] PlayersToThrowInitial

-- Black goes from 24 -> 1, white from 1 -> 24
direction :: Side -> Int

direction White = 1

direction Black -1

-- Opposite sides
opposite :: Side -> Side
opposite White = Black
opposite Black = White

-- Get the chip at position from Board
getChip :: Board -> Pos -> Point
getChip (Board b _) pos = b !! (pos)

-- Returns False if there are any chips on any triangle for the given side
-- In the given points
checkChipSide :: [Point] -> Side -> Bool
checkChipSide [] _ = True
checkChipSide (p:pts) side = case p of

-- If Nothing, then move on to next point

Nothing -> checkChipSide pts side

-- Otherwise, check if chips side == given side

Just (s,) | s==side -> False

| otherwise -> checkChipSide pts side

dieList :: Dice -> [Die]
dieList (di, d2) =
if d1 == d2 then [d1, d1, di1, di]
else [d1, d2]

-- increase bar value

incBar :: Side -> Board -> Board
incBar White (Board b bw bb) = Board b (bw+1l) bb
incBar Black (Board b bw bb) = Board b bw (bb+1)

-- decrease bar value
decBar :: Side -> Board -> Either InvalidDecisionType Board
decBar side (Board b bw bb) | side==White && bw>@ = Right (Board b (bw-1)
bb)

| side==Black && bb>@ = Right (Board b bw
(bb-1))

| otherwise = Left (NoBarPieces White)

--------------- Functions ---------------

-- move chip from 'from' to 'to'

-- bear off handled by moving and removing the piece from the board

-- Enter (bar) handled by subtracting from bar

move :: Side -> Board -> Move -> Either InvalidDecisionType Board

move side board (Move from to) = handleMoves board side from to

move side board (BearOff from to) = handleBearOffMove (handleMoves board
side from to) side

move side board (Enter from to) = takePiece from board side >>= landPiece
to side

-- Handle regular moves
handleMoves :: Board -> Side -> Pos -> Pos -> Either InvalidDecisionType
Board
handleMoves board side from to =
case getChip board from of
Just (_,_) -> takePiece from board side >>= landPiece to side
Nothing -> Left (NoPieces from)

-- Handle Bear off moves
handleBearOffMove :: Either InvalidDecisionType Board -> Side -> Either
InvalidDecisionType Board
handleBearOffMove board side =
case board of

Right (Board bd bw bb) | side==Black -> Right (Board ([Nothing] ++

(tail bd)) bw bb)
| side==White -> Right (Board ((take 25 bd) ++

[Nothing]) bw bb)

Right (Board _ _) -> board

Left err -> Left err

-- take piece from the board, throws error on nonlegality
takePiece :: Pos -> Board -> Side -> Either InvalidDecisionType Board
takePiece (-1) board side = decBar side board
takePiece pos board@(Board b bw bb) =
case getChip board pos of
Just (s, n) -> Right (Board (take (pos) b ++ [decl s n] ++ drop (pos+l)
b) bw bb)
Nothing -> Left (NoPieces pos)
where

decl _ 1
decl s n

Nothing
Just (s, n-1)

-- add piece to location, throws error on nonlegality
landPiece :: Pos -> Side -> Board -> Either InvalidDecisionType Board
landPiece pos side board@(Board b bw bb) =

case getChip board pos of

Nothing -> Right (setField (Just (side, 1)))
Just (s, n) | s == side -> Right (setField (Just (side, n+1)))
Just (_, n) | n==1 -> Right (incBar (opposite side) (setField

(Just (side, 1))))
_ -> Left (MovedOntoOpponentsClosedPoint pos)

where
setField ¥ = Board (take (pos) b ++ [f] ++ drop (pos+l) b) bw bb

-- Get legal moves for a single dice (handles any value 1..36)
-- get_normal_moves from backgammon.py

singleDieLegalMoves :: Board -> Die -> Side -> [Move]
singleDieLegalMoves bd d side = moves 1 where

moves :: Pos -> [Move]

moves 25 = []

moves i2 =

case getChip bd i2 of
Nothing -> nextMoves
-- if side same as chip, and 1 <= pos,move _pos <= 24 (in the board)
Just (s,) -> if (s == side && i2<=24 && ni <= 24 && i2>=1 && ni>=1)
then case getChip bd ni of
-- Check if move_pos is legal
Nothing -> Move i2 ni : nextMoves
Just (s2,n2) | s2==side -> Move i2 ni : nextMoves
| otherwise -> if (n2==1)
then Move i2 ni :
nextMoves
else nextMoves
else nextMoves
where nextMoves = moves (i2+1)
-- find next move_pos
ni = (i2 + d * direction side)

-- Checks if bearing off is possible
-- Only possible if
-- For Black = no chips on any triangle b/w [7..24]

-- For White = no chips on any triangle b/w [1..18]

canBearOff :: Board -> Side -> Bool

canBearOff (Board b bw bb) side
| side==Black = (bb==0) && checkChipSide (takelLast 19 b) side
| otherwise = (bw==0) && checkChipSide (take 19 b) side

-- play bear off move, assumes bear off possible
bearOffMoves :: Board -> Die -> Side -> [Move]
bearOffMoves bd dieRoll side =
directMoves ++ homeMoves ++ bigBearOff where
-- direct bearoffs (if chip at 5 away from bearoff and die roll 5)
directMoves :: [Move]
directMoves | not (checkChipSide [(getChip bd ind)] side) = [(BearOff
ind end)]
| otherwise = [] where
ind = if side==White then (25-dieRoll) else dieRoll
-- Single die moves for dieRoll, within homeboard no bearing off
homeMoves = singleDielegalMoves bd dieRoll side
directHome = directMoves ++ homeMoves
-- If nth works out, then you can bearOff from indexes < dieRoll
bigBearOff | length(directHome)==0 = bigBearOffFunc 1
| otherwise = [] where
bigBearOffFunc 7 = []
bigBearOffFunc i =
case getChip bd ind2 of
Nothing -> bigBearOffFunc (i+1)
Just (s,) | s==side && i<dieRoll -> BearOff ind2
end : bigBearOffFunc (i+1)
| otherwise -> bigBearOffFunc (i+1)
where ind2 = if side==White then (25-i) else i
end = if side==White then 25 else ©

barMoves :: Board -> Die -> Side -> [Move]
barMoves bd dieRoll side =
case getChip bd ind of
Nothing -> [(Enter (-1) ind)]
Just (s,) | s==side -> [(Enter (-1) ind)]
| otherwise -> []
where ind = if side==White then (25-dieRoll) else dieRoll

-- Keep only unique moves from list of moves.
-- Moves can be reversed as well

uniqueMoves :: [[Move]] -> [[Move]]
uniqueMoves xs = uniqueMoves' Set.empty xs where

uniqueMoves' :: Set.Set([Move]) -> [[Move]] -> [[Move]]
uniqueMoves' [] = []
uniqueMoves' s (Xx:Xss)
| x “Set.member™ s || (reverse x) ~Set.member® s = uniqueMoves' s xss

| otherwise = x : uniqueMoves' (Set.insert x s) xss

-- Given a dice roll, board and a side, it gives legal moves

-- Moves can be run on function move directly

-- Checks bear offs, bar and normal moves as well

-- Handles double dice rolls and permutations of dice

legalMoves :: Board -> Dice -> Side -> [[Move]]

legalMoves bdM dice side
-- if both die values same, double dice roll
| (length dieRollsM == 4) = legalMoves' (Right bdM) dieRollsM
-- otherwise dice + reverse dice
| otherwise = uniqueMoves (legalMoves' (Right bdM) dieRollsM ++

legalMoves' (Right bdM) (reverse dieRollsM))

where dieRollsM = dielist dice

legalMoves' :: Either InvalidDecisionType Board -> [Die] ->
[[Move]]

legalMoves' _ [] = [[1]

legalMoves' (Left _) _ = [[]]

legalMoves' (Right bd@(Board _ bw bb)) dieRolls
-- check bar moves
| (side==White && bw/=0) || (side==Black && bb/=0) =
if (length bMoves /= 0)
then [m:ms | m <- bMoves,
ms <- legalMoves' (move side bd m) nDRolls]
else legalMoves' (Right bd) nDRolls
-- check bear off moves
-- check single die move
| (length nMoves /= 0) =
[m:ms | m <- nMoves,
ms <- legalMoves' (move side bd m) nDRolls]
-- if no move possible with die, then go to the next die
| otherwise = legalMoves' (Right bd) nDRolls where
dRoll = head dieRolls
nDRolls = tail dieRolls
bMoves = barMoves bd dRoll side
nMoves = 1if (canBearOff bd side)
then (bearOffMoves bd dRoll side)

else (singleDielLegalMoves bd dRoll side)

-- change game state to given state
moveToState :: GameState -> Game -> Game
moveToState state game = game { gameState = state }

-- add new action to action list in game

appendAction :: GameAction -> Game -> Game

appendAction action game = game { gameActions = gameActions game ++
[action] }

-- change state and add action for a game
success :: Game -> GameState -> GameAction -> Either InvalidAction Game
success game state action =

Right ((appendAction action . moveToState state) game)

-- stop at the first error, otherwise continue
first :: (a -> c¢) -> Either a b -> Either c b
first £ (Left 1) Left (f 1)

first _ (Right r) Right r

-- check if game has ended (no pieces left on board of side)
checkGameEnd :: Board -> Side -> Bool
checkGameEnd (Board b bw bb) side = (bar==0) && (checkChipSide b side)
where

bar = if side==White then bw else bb

-- handles the different actions
performAction :: GameAction -> Game -> Either InvalidAction Game
-- Initial dice throw
performAction act@(InitialThrows dw db) game@Game{gameState =
PlayersToThrowInitial} =
success game (if dw /= db then ToMove side (normDice (dw,db))
else PlayersToThrowInitial) act where
side = if dw > db then White else Black
-- Move
performAction act@(PlayerAction pSide m@(Moves moves)) game@Game{gameState
= ToMove side _} | pSide==side =
do updatedBoard <- wrapInInvalidDecision (foldM (move side) board moves)
if (checkGameEnd updatedBoard side)
then success (game {gameBoard = updatedBoard}) (GameFinished side)
act -- Game finished
else success (game {gameBoard = updatedBoard}) (ToThrow (opposite

side)) act where -- If not finished, then throw for opposite side
board = gameBoard game
wrapInInvalidDecision = first (InvalidPlayerDecision game m)
-- Throw
performAction act@(PlayerAction pSide (Throw dice)) game@Game{gameState =
ToThrow side} | pSide==side =
success game (ToMove side dice) act
-- Any other action is invalid
performAction action game = Left (ActionInvalidForState (gameState game)
action)

-- Max die first
normDice :: Dice -> Dice
normDice (d1, d2) = if d1 > d2 then (di1, d2) else (d2, di)

-- White starts
initialThrowWhite :: Int -> GameAction
initialThrowWhite seed = head [makeInitialAction (normDice (i,j)) | (i,3)
<- nRolls seed 10, i/=j] where
makeInitialAction (a,b)= InitialThrows a b

-- Random starts
initialThrowRandom :: Int -> GameAction
initialThrowRandom seed = head [makeInitialAction (i,j) | (i,j) <- nRolls
seed 10, i/=j] where
makeInitialAction (a,b)= InitialThrows a

-- Get n dice rolls
nRolls :: Int -> Int -> [Dice]
nRolls seed n = zip (take n s1) (take n s2)
where sl = R.randomRs (1,6) (R.mkStdGen seed) :: [Die]
s2 = R.randomRs (1,6) (R.mkStdGen (seed+1)) ::
[Die]

-- wrapper for 1000 dice rolls
diceRolls :: Int -> [Dice]
diceRolls seed = nRolls seed 1000

getRandomMove :: [[Move]] -> Int -> [Move]

getRandomMove [] _ = []

getRandomMove moves seed = moves !! (head $ R.randomRs (9, ((length
moves)-1)) (R.mkStdGen seed) :: Int)

-- loops through and plays a game
-- game always starts with white, change initialThrowWhite to
initialThrowRandom to random start
-- handles state and then loop, ends at game end only
-- seed defines randomness, reproducable results
gamePlay :: Side -> pl -> p2 -> Int -> (Board -> Dice -> Side -> pl1 -> p2
-> [Move]) -> Either InvalidAction Game
gamePlay pSide depth pruningDepth seed bestMoveFunc= gamePlay' newGame 1
where
dRolls = diceRolls seed
gamePlay' :: Game -> Int -> Either InvalidAction Game
-- handle initial throw
gamePlay' game@Game{gameState = PlayersToThrowInitial} n =
do
nextGame <- performAction (initialThrowWhite seed) game
gamePlay' nextGame n
-- Move
-- Chooses first move
gamePlay' game@Game{gameState = ToMove side dice} n =
do
let board = gameBoard game
let validMoves = legalMoves board dice side
-- let randomMove = if (length validMoves > @) then (head validMoves)

else []
let randomMove = getRandomMove validMoves seed
let movel = if pSide == side

then bestMoveFunc board dice side depth pruningDepth
else randomMove
nextGame <- performAction (PlayerAction side (Moves movel)) game
gamePlay' nextGame n
-- Dice throw
gamePlay' game@Game{gameState = ToThrow side} n =
do
nextGame <- performAction (PlayerAction side (Throw (dRolls !! n)))

game
gamePlay' nextGame (n+1)
-- End game
gamePlay' game@Game{gameState = GameFinished _} _ = Right (game)

-- Helper func - Takes a list of points, and returns a list of Ints
-- +1 for White at every point
-- -1 for Black at every point

pointCounter :: Point -> Int
pointCounter point = case point of

Nothing -> ©

Just(a,b) -> case a of
White -> b
Black -> (-b)

-- calculates chips on home board
homeBoardChips :: Board -> Side -> Int
homeBoardChips bd side = sum [(checkChip i) | i <- range] where
range = if side==White then [19..24] else [1..6]
checkChip ind = case getChip bd ind of
Nothing -> ©
Just (s,n) -> if (s==side) then n else ©

eval :: Board -> Side -> Int
-- eval bd@(Board b bw bb) side = trace (show $ [distance, barWeight,
homeWin, homeChips, opponentChips]) finalValue where
eval bd@(Board b bw bb) side = finalValue where
boardValues = map pointCounter b
whitePieces = sum $ filter (>0) boardValues
blackPieces = abs $ sum $ filter (<9) boardValues
distancelist = case side of
White -> filter (>0) $ zipWith (*) [24, 23..1] $ tail boardValues
Black -> filter (<0) $ zipWith (*) [1..24] $ tail boardValues
distance = abs $ sum distancelist
barWeight = case side of
White -> bw
Black -> bb
homeWin = case side of
White -> 15 - bw - whitePieces
Black -> 15 - bb - blackPieces
-- opponentWin = case side of
-- White -> 15 - bb - blackPieces
-- Black -> 15 - bw - whitePieces
homeChips = homeBoardChips bd side
opponentChips = (homeBoardChips bd (opposite side))
finalValue = homeChips + 10 * homeWin - distance - 10 * barWeight -
opponentChips

-- Performs the given move

performMoves :: Board -> Side -> [Move] -> Either InvalidDecisionType Board

performMoves board _ [] = (Right board)

performMoves board side (m:ms) = case (move side board m) of
(Left 1) -> Left 1
(Right newBoard) -> performMoves newBoard side ms

-- forwardPruning Algorithm
forwardPruning :: Board -> Side -> [[Move]] -> Int -> [[Move]]
forwardPruning board side moves k
| length moves < k = moves
| otherwise = [mv | (_,mv) <- (take k sortedFordwardPruninglList)] where
sortedFordwardPruninglList = sortBy (\x y -> compare (fst x) (fst y))
fordwardPruninglist
fordwardPruninglList

moves
fordwardPruning' mv = case (performMoves board side mv) of

(Left) -> 0
(Right newBoard) -> eval newBoard side

zip [-1*(fordwardPruning' mv) | mv <- moves]

BackSeq.hs
{_

Sequential implementation of functions, uses backgammon.hs module
Check Project report for explaination of each function.

-}

import Backgammon

import System.Environment(getArgs)

bestMove :: Board -> Dice -> Side -> Int -> Int -> [Move]
bestMove board diceRoll side depth pruningDepth = bestMove'
forwardPruningMoves (-1/0) [] where
alllLegalMoves = legalMoves board diceRoll side
forwardPruningMoves = forwardPruning board side alllegalMoves
pruningDepth
bestMove' :: (Ord t, Fractional t) => [[Move]] -> t -> [Move] -> [Move]
bestMove' [] _ bestMoveA = bestMoveA
bestMove' (mv:mvs) bestScore bestMoveA = case (performMoves board side
mv) of
(Left) -> bestMove' mvs bestScore bestMoveA
(Right upBoard) -> bestMove' mvs newBestScore newBestMove where
expectiRes = expectinode upBoard side (opposite side) bestScore (1/90)
depth pruningDepth
newBestScore = if (expectiRes>bestScore) then expectiRes else
bestScore
newBestMove = if (expectiRes>bestScore) then mv else bestMoveA

expectinode :: (Ord t, Fractional t) => Board -> Side -> Side -> t -> t ->
Int -> Int -> t
expectinode board side _ @ _ = fromIntegral $ eval board side

expectinode board side currSide alpha beta depth pruningDepth
| side==currSide = sumAllDice minValue
| otherwise = sumAllDice maxValue where
sumAllDice func = sum [(multiplier diceRoll)*(func board side currSide
diceRoll alpha beta depth pruningDepth)
| diceRoll <- allDiceRolls]
multiplier (d1,d2) = if (d1==d2) then (1/36) else (1/18)

minValue :: (Fractional t, Ord t) => Board -> Side -> Side -> Dice -> t ->
t -> Int -> Int -> t

minValue board side currSide diceRoll alpha beta depth pruningDepth
| length allLegalMoves > © = minValue' forwardPruningMoves alpha beta
(1/0)
| otherwise = expectinode board side (opposite currSide) alpha beta
(depth-1) pruningDepth where
alllLegalMoves = legalMoves board diceRoll currSide
forwardPruningMoves = forwardPruning board currSide alllegalMoves
pruningDepth
minValue' :: (Ord t, Fractional t) => [[Move]] ->t ->t ->t -> t
minValue' [] _ _ bestScore = bestScore
minValue' (mv:mvs) al bt bestScore = case (performMoves board currSide
mv) of
(Left _) -> minValue' mvs al bt bestScore
(Right newBoard) -> if newBestScore <= al
then newBestScore
else minValue' mvs al newBt newBestScore where
expectiRes = expectinode newBoard side (opposite currSide) al bt
(depth-1) pruningDepth
newBestScore = min bestScore expectiRes
newBt = min bt newBestScore

maxValue :: (Fractional t, Ord t) => Board -> Side -> Side -> Dice -> t ->
t -> Int -> Int -> t
maxValue board side currSide diceRoll alpha beta depth pruningDepth
| length allLegalMoves > © = maxValue' forwardPruningMoves alpha beta
(-1/0)
| otherwise = expectinode board side (opposite currSide) alpha beta
(depth-1) pruningDepth where
alllLegalMoves = legalMoves board diceRoll currSide
forwardPruningMoves = forwardPruning board currSide alllLegalMoves
pruningDepth
maxValue' :: (Ord t, Fractional t) => [[Move]] ->t ->t ->t -> t
maxValue' [] _ _ bestScore = bestScore
maxValue' (mv:mvs) al bt bestScore = case (performMoves board currSide
mv) of
(Left) -> maxValue' mvs al bt bestScore
(Right newBoard) -> if newBestScore >= bt
then newBestScore
else maxValue' mvs newAl bt newBestScore where
expectiRes = expectinode newBoard side (opposite currSide) al bt
(depth-1) pruningDepth
newBestScore = max bestScore expectiRes
newAl = max al newBestScore

main :: IO()
main = do
args <- getArgs
let side = read $ head args :: Side
let restArgs = map (\x -> (read x :: Int)) (tail args)
let depth = (restArgs !! 0)
let pruningDepth = (restArgs !! 1)
let seed = (restArgs !! 2)
let ans = gamePlay side depth pruningDepth seed bestMove
print $ ans

BackPar.hs

{-
Parallel implementation of functions, uses backgammon.hs module
Check Project report for explaination of each function.

-}

import Backgammon

import Control.Parallel.Strategies(using, parList, rdeepseq)
import Control.DeepSeq(NFData)

import System.Environment(getArgs)

bestMovePar :: Board -> Dice -> Side -> Int -> Int -> [Move]
bestMovePar board diceRoll side depth pruningDepth = bestMovePar'
forwardPruningMoves ((-1/0)::Double) [] where
alllLegalMoves = legalMoves board diceRoll side
forwardPruningMoves = forwardPruning board side alllegalMoves
pruningDepth
bestMovePar' :: (Ord t, Fractional t, NFData t, Num t) => [[Move]] -> t
-> [Move] -> [Move]
bestMovePar' [] _ bestMoveA = bestMoveA
bestMovePar' (mv:mvs) bestScore bestMoveA = case (performMoves board side
mv) of
(Left _) -> bestMovePar' mvs bestScore bestMoveA
(Right upBoard) -> bestMovePar' mvs newBestScore newBestMove where
expectiRes = expectinodePar upBoard side (opposite side) bestScore
(1/0) depth pruningDepth
newBestScore = if (expectiRes>bestScore) then expectiRes else
bestScore
newBestMove = if (expectiRes>bestScore) then mv else bestMoveA

expectinodePar :: (Fractional a, NFData a, Ord a) => Board -> Side -> Side
->a ->a -> Int -> Int -> a
expectinodePar board side =~ © _ = fromIntegral $ eval board side

expectinodePar board side currSide alpha beta depth pruningDepth
| side==currSide = sum $ sumAllDice minValuePar
| otherwise = sum $ sumAllDice maxValuePar where
sumAllDice func = map (\diceRoll -> (multiplier diceRoll) *
func board side currSide diceRoll alpha
beta depth pruningDepth) allDiceRolls
‘using” parlList rdeepseq
multiplier (d1,d2) = if (d1==d2) then (1/36) else (1/18)

minValuePar :: (Fractional t, Ord t, NFData t) => Board -> Side -> Side ->
Dice -> t -> t -> Int -> Int -> t
minValuePar board side currSide diceRoll alpha beta depth pruningDepth
| length allLegalMoves > © = minValuePar' forwardPruningMoves alpha beta
(1/0)
| otherwise = expectinodePar board side (opposite currSide) alpha beta
(depth-1) pruningDepth where
alllLegalMoves = legalMoves board diceRoll currSide
forwardPruningMoves = forwardPruning board currSide alllegalMoves
pruningDepth

minValuePar' :: (Ord t, Fractional t, NFData t) => [[Move]] -> t -> t
>t >t
minValuePar' [] _ _ bestScore = bestScore

minValuePar' (mv:mvs) al bt bestScore = case (performMoves board
currSide mv) of
(Left _) -> minValuePar' mvs al bt bestScore
(Right newBoard) -> if newBestScore <= al
then newBestScore
else minValuePar' mvs al newBt newBestScore where
expectiRes = expectinodePar newBoard side (opposite currSide) al bt
(depth-1) pruningDepth
newBestScore = min bestScore expectiRes
newBt = min bt newBestScore

maxValuePar :: (Fractional t, Ord t, NFData t) => Board -> Side -> Side ->
Dice -> t -> t -> Int -> Int -> t
maxValuePar board side currSide diceRoll alpha beta depth pruningDepth
| length allLegalMoves > @ = maxValuePar' forwardPruningMoves alpha beta
(-1/0)
| otherwise = expectinodePar board side (opposite currSide) alpha beta
(depth-1) pruningDepth where
alllLegalMoves = legalMoves board diceRoll currSide
forwardPruningMoves = forwardPruning board currSide alllegalMoves
pruningDepth

maxValuePar' :: (Ord t, Fractional t, NFData t) => [[Move]] -> t -> t
->t >t
maxValuePar' [] _ _ bestScore = bestScore

maxValuePar' (mv:mvs) al bt bestScore = case (performMoves board
currSide mv) of
(Left _) -> maxValuePar' mvs al bt bestScore
(Right newBoard) -> if newBestScore >= bt
then newBestScore
else maxValuePar' mvs newAl bt newBestScore where

expectiRes = expectinodePar newBoard side (opposite currSide) al bt
(depth-1) pruningDepth

newBestScore = max bestScore expectiRes

newAl = max al newBestScore

main :: IO()
main = do
args <- getArgs
let side = read $ head args :: Side
let restArgs = map (\x -> (read x :: Int)) (tail args)
let depth = (restArgs !! 0)
let pruningDepth = (restArgs !! 1)
let seed = (restArgs !! 2)
let ans = gamePlay side depth pruningDepth seed bestMovePar
print $ ans

BackParNP.hs

{-
Parallel No Alpha-Beta pruning implementation of functions, uses
backgammon.hs module

Check Project report for explaination of each function.

-}

import Backgammon

import Control.Parallel.Strategies(using, parList, rdeepseq)
import Control.DeepSeq(NFData)

import Data.List(sortBy)

import System.Environment(getArgs)

bestMovePar :: (Eq a, Num a) => Board -> (Die, Die) -> Side -> a -> Int ->
[Move]
bestMovePar board diceRoll side depth pruningDepth = bestMovePar'
forwardPruningMoves where
alllLegalMoves = legalMoves board diceRoll side
forwardPruningMoves = forwardPruning board side alllegalMoves
pruningDepth
bestMovePar' mvs = snd $ head $ sortBy (\x y -> compare (fst x) (fst y))
(bestMoveParAll mvs)
bestMoveParAll mvs = map innerFunc mvs “using parlList rdeepseq
innerFunc mv = case (performMoves board side mv) of
(Left _) -> (((1/0)::Double),mv)
(Right upBoard) -> ((-1*expectiRes), mv) where
expectiRes = expectinodePar upBoard side (opposite side)
((-1/0)::Double) (1/9) depth pruningDepth

expectinodePar :: (Eq a, Num a) => Board -> Side -> Side -> pl -> p2 -> a
-> Int -> Double
expectinodePar board side =~ © _ = fromIntegral $ eval board side

expectinodePar board side currSide alpha beta depth pruningDepth
| side==currSide = sum $ sumAllDice minValuePar
| otherwise = sum $ sumAllDice maxValuePar where
sumAllDice func = map (\diceRoll -> (multiplier diceRoll) *
func board side currSide diceRoll alpha
beta depth pruningDepth) allDiceRolls
‘using” parlList rdeepseq
multiplier (d1,d2) = if (d1==d2) then (1/36) else (1/18)

minValuePar :: (Eq a, Num a) => Board -> Side -> Side -> (Die, Die) -> pl
-> p2 -> a -> Int -> Double
minValuePar board side currSide diceRoll alpha beta depth pruningDepth
| length allLegalMoves > © = minValuePar' forwardPruningMoves
| otherwise = expectinodePar board side (opposite currSide) alpha beta
(depth-1) pruningDepth where
alllLegalMoves = legalMoves board diceRoll currSide
forwardPruningMoves = forwardPruning board currSide alllegalMoves
pruningDepth
minValuePar' mvs = fst $ head $ sortBy (\x y -> compare (fst x) (fst
y)) (minValueParAll mvs)
minValueParAll mvs = map innerFunc mvs “using parlList rdeepseq
innerFunc mv = case (performMoves board currSide mv) of
(Left _) -> (((1/0)::Double),mv)
(Right newBoard) -> ((expectiRes), mv) where
expectiRes = expectinodePar newBoard side (opposite currSide) alpha
beta (depth-1) pruningDepth

maxValuePar :: (Eq a, Num a) => Board -> Side -> Side -> (Die, Die) -> p1
-> p2 -> a -> Int -> Double
maxValuePar board side currSide diceRoll alpha beta depth pruningDepth
| length allLegalMoves > © = maxValuePar' forwardPruningMoves
| otherwise = expectinodePar board side (opposite currSide) alpha beta
(depth-1) pruningDepth where
alllLegalMoves = legalMoves board diceRoll currSide
forwardPruningMoves = forwardPruning board currSide alllLegalMoves
pruningDepth
maxValuePar' mvs = fst $ head $ sortBy (\x y -> compare (fst x) (fst
y)) (maxValueParAll mvs)
maxValueParAll mvs = map innerFunc mvs “using ™ parlList rdeepseq
innerFunc mv = case (performMoves board currSide mv) of
(Left) -> (((1/0)::Double),mv)
(Right newBoard) -> ((-1*expectiRes), mv) where
expectiRes = expectinodePar newBoard side (opposite currSide) alpha
beta (depth-1) pruningDepth

main :: IO()
main = do
args <- getArgs
let side = read $ head args :: Side
let restArgs = map (\x -> (read x :: Int)) (tail args)
let depth = (restArgs !! 0)
let pruningDepth = (restArgs !! 1)

let seed = (restArgs !! 2)
let ans = gamePlay side depth pruningDepth seed bestMovePar
print $ ans

Acknowledgements

Code and Ideas borrowed from:
- Backgammon python implementation:
https://github.com/chanddu/Backgammon-python-numpy-
- Backgammon haskell implementation:

https://github.com/mmakowski/backgammon-model
(This isn’t fully functional)

https://github.com/chanddu/Backgammon-python-numpy-
https://github.com/mmakowski/backgammon-model

