Recursion and Higher-Order Functions

Stephen A. Edwards

Columbia University

Fall 2020
Recursion in Haskell

Pattern matching works nicely:

\[
\text{recfun } \langle \text{base case} \rangle = \langle \text{base value} \rangle \\
\text{recfun } \langle \text{part} \rangle \ \langle \text{rest} \rangle = \langle \text{some work} \rangle \ \langle \text{part} \rangle \ \langle \text{combined with} \rangle \ \text{recfun } \langle \text{rest} \rangle
\]

\[
\text{maximum'} :: \text{Ord } a \Rightarrow [a] \rightarrow a \\
\text{maximum'} [] = \text{error} \ "\text{empty list}" \\
\text{maximum'} [x] = x \quad \quad \quad \quad \quad \text{-- base case} \\
\text{maximum'} (x:xs) \\
| x > \text{maxTail} = x \quad \quad \quad \quad \quad \quad \text{-- found a new maximum} \\
| \text{otherwise} = \text{maxTail} \\
\text{where } \text{maxTail} = \text{maximum'} \ xs \quad \quad \quad \quad \quad \text{-- recurse}
\]

The list elements need to be ordered so we can perform > on them

\text{maximum} is part of the standard prelude; you do not need to write this
Far better: build the solution out of helpful pieces, even if they are small. It is efficient; GHC aggressively inlines code to avoid function call overhead.

```haskell
max' :: Ord a => a -> a -> a
max' a b
  | a > b = a
  | otherwise = b

maximum' :: Ord a => [a] -> a
maximum' [] = error "empty list"
maximum' [x] = x
maximum' (x:xs) = x `max` maximum' xs
```

This is still twice as complicated as it needs to be; we'll revisit this later.
Replicate and Take

```
replicate' :: (Num n, Ord n) => n -> a -> [a]
replicate' n x
  | n <= 0     = []
  | otherwise  = x : replicate' (n-1) x
```

The Num typeclass (-) does not include Ord (for <=), so Ord is needed.

Used a guard since we’re testing a condition \(n \leq 0 \) rather than a constant.

```
take' :: (Num n, Ord n) => n -> [a] -> [a]
take' _    | n <= 0  = []  -- base case
take' []   = []     -- base case
take' x:xs = x : take' (n-1) xs -- recurse
```
Replicate and Take Revisited

The Standard Prelude implementation uses infinite lists

```haskell
take' :: (Num n, Ord n) => n -> [a] -> [a]
take' n _ | n <= 0 = []
take' _ [] = []
take' n (x:xs) = x : take' (n-1) xs

repeat' :: a -> [a]
repeat' x = xs where xs = x : xs  -- Infinite list

replicate' :: (Num n, Ord n) => n -> a -> [a]
replicate' n x = take' n (repeat' x)
```
Zip: Combine Two Lists Into a List of Pairs

```haskell
define (
  zip' :: [a] -> [b] -> [(a,b)]
  zip' [] _ = []
  zip' _ [] = []
  zip' (x:xs) (y:ys) = (x,y) : zip' xs ys
)
```

Works nicely with lists of mismatched lengths, including infinite:

```haskell
*Main> zip' [0..3] [1..5] :: [(Int, Int)]
[(0,1),(1,2),(2,3),(3,4)]

*Main> zip' "abc" ([1..] :: [Int])
[('a',1),('b',2),('c',3)]
```
Quicksort in Haskell

- Pick and remove a pivot
- Partition into two lists: smaller or equal to and larger than pivot
- Recurse on both lists
- Concatenate smaller, pivot, then larger

```haskell
quicksort :: Ord a => [a] -> [a]
quicksort [] = []
quicksort (p:xs) = quicksort [x | x <- xs, x <= p] ++ [p] ++ quicksort [x | x <- xs, x > p]
```

Efficient enough: ++ associates to the right so a ++ b ++ c is (a ++ (b ++ c))
Using Recursion in Haskell

Haskell does not have classical *for* or *do* loops

Recursion can implement either of these plus much more. Tail-recursion is just as efficient as such loops

Most of the time, however, your loop or recursive function fits a well-known pattern that is already in a Standard Prelude function that you should use instead

A key advantage of functional languages, including Haskell, is that you can build new control constructs
Partially Applied Functions

The (+) syntax also permits a single argument to be applied on either side and returns a function that takes the “missing” argument:

Prelude> (++) "", hello") "Stephen"
"Stephen, hello"
Prelude> ("Hello, " ++) "Stephen"
"Hello, Stephen"
Prelude> (<= (5::Int)) 10
False
Prelude> (<= (5::Int)) 5
True
Prelude> (<= (5::Int)) 4
True

- is weird because (-4) means negative four. Use subtract:

Prelude> (subtract 4) 10
6
Passing functions as arguments is routine yet powerful

```
Prelude> :{
Prelude| applyTwice :: (a -> a) -> a -> a
Prelude| applyTwice f x = f (f x)
Prelude| :}

Prelude> applyTwice (+5) 1
11
Prelude> applyTwice (++) "is stupid") "Stephen"
"Stephen is stupid is stupid"
```

“applyTwice takes a function and return a function that takes a value and applies the function to the value twice”
Flip

Standard Prelude function that reverses the order of the first arguments

```
flip' :: (a -> b -> c) -> (b -> a -> c)
flip' f = g where g x y = f y x
```

But since the “function type” operator \(\rightarrow\) associates right-to-left,

```
flip' :: (a -> b -> c) -> b -> a -> c
flip' f x y = f y x
```

Prelude> zip [1..5] "Hello"
[(1,'H'),(2,'e'),(3,'l'),(4,'l'),(5,'o')]
Prelude> flip zip [1..5] "Hello"
[('H',1),('e',2),('l',3),('l',4),('o',5)]
Prelude> zipWith (flip div) [2,2..] [10,8..2]
[5,4,3,2,1]
Map: A Foundation of Functional Programming

A Standard Prelude function. Two equivalent ways to code it:

```haskell
map' :: (a -> b) -> [a] -> [b]
map' _ [] = []
map' f (x:xs) = f x : map' f xs

map'' :: (a -> b) -> [a] -> [b]
map'' f xs = [ f x | x <- xs ]
```

```
*Main> map (+5) ([1..5] :: [Int])
[6,7,8,9,10]
*Main> map ( ++ "!" ) ["BIFF","BAM","POW"]
["BIFF!","BAM!","POW!"]
```

You’ve written many loops that fit map in imperative languages
Another Standard Prelude function zipWith takes a function and two lists and applies the function to the list elements, like a combination of zip and map:

\[
\text{zipWith}' :: (a \to b \to c) \rightarrow [a] \rightarrow [b] \rightarrow [c]
\]

\[
\text{zipWith}' _ _ [_] = []
\]

\[
\text{zipWith}' _ [_] _ = []
\]

\[
\text{zipWith}' f (x:xs) (y:ys) = f \ x \ y : \text{zipWith}' f \ xs \ ys
\]

```
Prelude> \text{zipWith} (+) [1..5] [10,20..] :: [Int]
[11,22,33,44,55]
```

The Standard Prelude implements zip with zipWith

\[
\text{zip}' :: [a] \rightarrow [b] \rightarrow [(a,b)]
\]

\[
\text{zip}' = \text{zipWith} (,)
\quad -- \text{the "make-a-pair" operator}
\]
Filter: Select each element of a list that satisfies a predicate

\[
\text{filter} :: (a \rightarrow \text{Bool}) \rightarrow [a] \rightarrow [a]
\]

\[
\text{filter _ _ } = []
\]

\[
\text{filter} p (x:xs) | p x = x : \text{filter} p xs
| \text{otherwise} = \text{filter} p xs
\]

Prelude> \text{filter} (>= 3) [1..10] :: [Int]
[3,4,5,6,7,8,9,10]

What’s the largest number under 100,000 that’s divisible by 3,829?

Prelude> \text{x `divides` y = y `mod` x == 0}
Prelude> head (filter (3829 `divides`) [100000,99999..])
99554
Using *filter* instead of list comprehensions:

```
quicksort :: Ord a => [a] -> [a]
quicksort [] = []
quicksort (p:xs) = quicksort (filter (<= p) xs) ++ [p] ++
                   quicksort (filter (> p) xs)
```

Similar performance; choose the one that’s easier to understand
takeWhile: Select the first elements that satisfy a predicate

Same type signature as filter, but stop taking elements from the list once the predicate is false. Also part of the Standard Prelude

\[
\text{takeWhile'} :: (a \to \text{Bool}) \to [a] \to [a]
\]

\[
\text{takeWhile'} ~ [] = []
\]

\[
\text{takeWhile'} ~ p ~ (x:xs) = \begin{cases}
 x & \text{if } p ~ x \\
 \text{takeWhile'} ~ p ~ xs & \text{otherwise}
\end{cases}
\]

Prelude> takeWhile (\=/ ' ') "Word splitter function"
"Word"

What’s the sum of all odd squares under 10,000?

Prelude> sum (takeWhile (<10000) (filter odd (map (^2) [1..]))))
166650
Prelude> sum (takeWhile (<10000) [n^2 | n <- [1..], odd (n^2)])
166650
Twin Primes

Twin Primes differ by two, e.g., 3 and 5, 11 and 13, etc.

Prelude> primes = f [2..] where
Prelude| f (p:xs) = p : f [x | x <- xs, x `mod` p /= 0]

Prelude> twinPrimes = filter twin (zip primes (tail primes)) where
Prelude| twin (a,b) = a+2 == b

Prelude> take 7 twinPrimes
[(3,5),(5,7),(11,13),(17,19),(29,31),(41,43),(59,61)]

Prelude> length twinPrimes

(Left as an exercise for the reader)
Collatz sequences

For starting numbers between 1 and 100, how many Collatz sequences are longer than 15?

collatz :: Int -> [Int]
collatz 1 = [1]
collatz n | even n = n : collatz (n `div` 2)
 | otherwise = n : collatz (n * 3 + 1)

numLongChains :: Int
numLongChains = length (filter isLong (map collatz [1..100]))
 where isLong xs = length xs > 15

*Main> collatz 30
[30,15,46,23,70,35,106,53,160,80,40,20,10,5,16,8,4,2,1]
*Main> numLongChains
66
Lambda Expressions

A *lambda expression* is an unnamed function. \ is a \(\lambda \) missing a leg:

\[
\langle \text{args} \rangle \rightarrow \langle \text{expr} \rangle
\]

Things like \((+ 5)\) and \(\text{max} 5\) are also unnamed functions, but the lambda syntax is more powerful.

Without a Lambda expression:

\[
\text{numLongChains} = \text{length} (\text{filter} \ \text{isLong} \ (\text{map} \ \text{collatz} \ [1..100]))
\]

\[
\text{where} \ \text{isLong} \ \text{xs} = \text{length} \ \text{xs} > 15
\]

Using Lambda:

\[
\text{numLongChains} = \text{length} (\text{filter} \ (\text{x} \rightarrow \text{length} \ \text{x} > 15) \ (\text{map} \ \text{collatz} \ [1..100]))
\]
Lambda Expressions

Multiple and pattern arguments:

Prelude> zipWith (\a b -> a * 100 + b) [5,4..1] [1..5] [501,402,303,204,105]
Prelude> map (\(a,b) -> a + b) [(1,2),(3,5),(6,3),(2,6),(2,5)] [3,8,9,8,7]

Function definitions are just convenient shorthand for Lambda expressions:

\[addThree :: \text{Num} \ a \Rightarrow a \to a \to a \to a \]
\[\text{addThree} \ x \ y \ z = x + y + z \]

Some Lambdas are unnecessary:

Prelude> zipWith (\x y -> x + y) [1..5] [100,200..500] [101,202,303,404,505]
Prelude> zipWith (+) [1..5] [100,200..500] [101,202,303,404,505]
Fold: Another Foundational Function

Apply a function to each element to accumulate a result:

\[\text{foldl } f \ z \ [a_1, a_2, \ldots, a_n] = f (\cdots (f (f \ z \ a_1) \ a_2) \cdots) \ a_n \]

\[
\begin{align*}
\text{foldl} & \quad :: \ (a \rightarrow b \rightarrow a) \rightarrow a \rightarrow [b] \rightarrow a \\
\text{foldl } f \ z \ [] & \quad = \quad z \\
\text{foldl } f \ z \ (x:xs) & \quad = \quad \text{foldl } f \ (f \ z \ x) \ xs
\end{align*}
\]

Prelude> 0 + 1 + 2 + 3 + 4 + 5
15
Prelude> foldl (\acc x \rightarrow acc + x) 0 [1..5]
15
Prelude> foldl (+) 0 [1..5]
15

\[
\text{sum} :: \ \text{Num } a \rightarrow [a] \rightarrow a
\]

\[
\text{sum} = \text{foldl} \ (+) \ 0 \quad -- \text{Standard Prelude definition}
\]
Foldl† in action

\[\text{foldl} \quad :: \quad (a \to b \to a) \to a \to [b] \to a \]

\[
\begin{align*}
\text{foldl } f \ z \ [] &= z \\
\text{foldl } f \ z \ (x:xs) &= \text{foldl } f \ (f \ z \ x) \ xs
\end{align*}
\]

\[
\begin{align*}
\text{foldl } f \ 100 \ [1..3] &\quad \text{where} \ f = \ lambda \ z \ x \to z + x \quad --\ a.k.a. \ (+) \\
= \ &\text{foldl } f \ 100 \ [1,2,3] \quad --\ \text{Evaluate } \text{foldl}: \ \text{apply } f \ \text{to } z \ \text{and } x \\
= \ &\text{foldl } f \ (f \ 100 \ 1) \ [2,3] \quad --\ \text{Evaluate } f: \ \text{add } z \ \text{and } x \\
= \ &\text{foldl } f \ 101 \ [2,3] \\
= \ &\text{foldl } f \ (f \ 101 \ 2) \ [3] \\
= \ &\text{foldl } f \ 103 \ [3] \\
= \ &\text{foldl } f \ (f \ 103 \ 3) \ [] \\
= \ &\text{foldl } f \ 106 \ [] \quad --\ \text{Base case: return } z \\
= \ &106
\end{align*}
\]

† Technically, this is foldl’ in action; this gives the same result.
foldl1: foldl starting from the first element

foldl :: (a -> b -> a) -> a -> [b] -> a
foldl f z [] = z
foldl f z (x:xs) = foldl f (f z x) xs

foldl1 :: (a -> a -> a) -> [a] -> a
foldl1 f (x:xs) = foldl f x xs -- Start with the list's head
foldl1 _ [] = error "Prelude.foldl1: empty list"
foldl vs. foldr

foldl from the left; foldr from the right. Function’s arguments reversed

\[
\begin{align*}
\text{foldl } f \ z \ [a_1,a_2,\ldots,a_n] &= f \ (\cdots(f \ (f \ z \ a_1) \ a_2)\cdots) \ a_n \\
\text{foldr } f \ z \ [a_1,a_2,\ldots,a_n] &= f \ a_1 \ (f \ a_2 \ (\cdots(f \ a_n \ z))\cdots)
\end{align*}
\]

foldl :: (a -> b -> a) -> a -> [b] -> a
foldl f z [] = z
foldl f z (x:xs) = foldl f (f z x) xs -- f = \acc x -> ...

foldr :: (b -> a -> a) -> a -> [b] -> a
foldr f z [] = z
foldr f z (x:xs) = f x (foldr f z xs) -- f = \x acc -> ...
Folds Are Extremely Powerful: They’re Everywhere

\[\text{concat} :: [[a]] \to [a] \]
\[\text{concat } \text{xss} = \text{foldr} \ (++) \ [\] \text{xss} \]
\[\text{reverse} :: [a] \to [a] \]
\[\text{reverse} = \text{foldl} \ (\lambda a\ x \to x : a) \ [\] \quad \text{-- Lambda expression version} \]
\[\text{reverse} = \text{foldl} \ (\text{flip} \ (:\)) \ [\] \quad \text{-- Prelude definition} \]
\[\text{and, or} :: [\text{Bool}] \to \text{Bool} \]
\[\text{and} = \text{foldr} \ (\&\&) \text{ True} \]
\[\text{or} = \text{foldr} \ (||) \text{ False} \]
\[\text{sum, product} :: (\text{Num } a) \Rightarrow [a] \to a \]
\[\text{sum} = \text{foldl} \ (+) \text{ True} \]
\[\text{product} = \text{foldl} \ (\ast) \text{ False} \]
\[\text{maximum, minimum} :: \text{Ord } a \Rightarrow [a] \to a \]
\[\text{maximum} [] = \text{error} \ "\text{Prelude.maximum: empty list}" \]
\[\text{maximum } \text{xss} = \text{foldl1} \text{ max } \text{xss} \]
\[\text{minimum} [] = \text{error} \ "\text{Prelude.minimum: empty list}" \]
\[\text{minimum } \text{xss} = \text{foldl1} \text{ min } \text{xss} \]
Folds Subsume \(\text{map} \) and \(\text{filter} \)

\[
\text{map}' :: (a \to b) \to [a] \to [b]
\]
\[
\text{map}' \ f \ xs = \text{foldr} \ (\lambda x \ \text{acc} \to f \ x : \text{acc}) \ [] \ xs
\]

A left fold also works, but is less efficient because of \(++ \):

\[
\text{map}' \ f \ xs = \text{foldl} \ (\lambda \text{acc} \ x \to \text{acc} ++ [f \ x]) \ [] \ xs
\]

\(\text{Filter} \) is like a conditional \(\text{map} \)

\[
\text{filter}' :: (a \to \text{Bool}) \to [a] \to [a]
\]
\[
\text{filter}' \ p = \text{foldr} \ (\lambda x \ \text{acc} \to \text{if} \ p \ \text{x} \ \text{then} \ x : \text{acc} \ \text{else} \ \text{acc}) \ []
\]

The Standard Prelude uses the recursive definitions of \(\text{map} \) and \(\text{filter} \)
Foldr Evaluates Left-to-Right Because Haskell is Lazy

Haskell’s *undefined* throws an exception only when it is evaluated

```
undefined :: a
undefined = error "Prelude.undefined"
```

```
foldr f z [a_1,a_2,…,a_n] = f a_1 (f a_2(⋯(f a_n z))⋯)
```

```
Prelude> quitZero x acc = if x == 0 then 0 else x + acc
Prelude> foldr quitZero 0 [3,2,1,0]  
6
Prelude> foldr quitZero 0 [3,2,1,0,100]  
6
Prelude> foldr quitZero 0 [3,2,1,undefined]  
*** Exception: Prelude.undefined
Prelude> foldr quitZero 0 [3,2,1,0,undefined]  
6
```
THREE LOGICIANS WALK INTO A BAR...

DOES EVERYONE WANT BEER?

I DON'T KNOW.

I DON'T KNOW.

YES!
&& and || are Short-Circuit Operators

\((\&\&), (||) : : \text{Bool} \rightarrow \text{Bool} \rightarrow \text{Bool}\)

- True \&\& x = x
- False \&\& _ = False
- True || _ = True
- False || x = x

\(\text{and}, \text{or} : : [\text{Bool}] \rightarrow \text{Bool}\)

\text{and} = \text{foldr} (\&\&) \text{True}
\text{or} = \text{foldr} (||) \text{False}

Prelude> \text{or} [True, True, undefined]
True
Prelude> \text{and} [True, True, undefined]
*** Exception: Prelude.undefined
Prelude> \text{and} [True, False, undefined]
False
Prelude> \text{or} [False, True, undefined]
True
Prelude> \text{or} [False, False, undefined]
*** Exception: Prelude.undefined
Foldl Evaluates Left-to-Right Because of Laziness

foldl :: (a -> b -> a) -> a -> [b] -> a
foldl f z [] = z -- (base)
foldl f z (x:xs) = foldl f (f z x) xs -- (recurse)

foldl f 100 [1..3]
where f = \z x -> z + x -- (f)
 = foldl f 100 [1,2,3] -- expand range
 = foldl f (f 100 1) [2,3] -- (recurse)
 = foldl f (f (f 100 1) 2) [3] -- (recurse)
 = foldl f (f (f (f 100 1) 2) 3) [] -- (recurse)
 = f (f (f 100 1) 2) 3 -- (base)
 = (f (f 100 1) 2) + 3 -- (f)
 = (f 100 1) + 2 + 3 -- (f)
 = 100 + 1 + 2 + 3 -- (+)
 = 101 + 2 + 3 -- (+)
 = 103 + 3 -- (+)
 = 106 -- (+)
Scanl and Scanr: Fold Remembering Accumulator Values

\[
\text{scanl} \quad :: \quad (a \to b \to a) \to a \to [b] \to [a]
\]
\[
\text{scanl} \; f \; q \; xs = q : (\text{case} \; xs \; \text{of} \; []) \to []
\]
\[
x:xs \to \text{scanl} \; f \; (f \; q \; x) \; xs
\]

\[
\text{scanr} \quad :: \quad (b \to a \to a) \to a \to [b] \to [a]
\]
\[
\text{scanr} \; f \; q0 \; [] = [q0]
\]
\[
\text{scanr} \; f \; q0 \; (x:xs) = f \; x \; q : qs \; \text{where} \; qs@(q:_)=\text{scanr} \; f \; q0 \; xs
\]

Prelude> \text{foldl} \; (+) \; 0 \; [1..5]
15
Prelude> \text{scanl} \; (+) \; 0 \; [1..5]
[0, 1, 3, 6, 10, 15]
Prelude> \text{scanr} \; (+) \; 0 \; [1..5]
[15, 14, 12, 9, 5, 0]
How many square roots added together just exceed 1000?

Prelude> length (takeWhile (<1000) (scanl1 (+) (map sqrt [1..])))
130
Prelude> sum (map sqrt [1..130])
993.6486803921487
Prelude> sum (map sqrt [1..131])
1005.0942035344083
Avoiding LISP† with $

Many functions put their complex-to-compute arguments at the end; applying these in sequence give expressions of the form $f ... (g (h ...))$

Use $ to eliminate the ending parentheses. It is right-associative at the lowest precedence so f g h x is $f (g (h x))$

Normal argument application (juxtaposition) is at the highest precedence

```
infirx 0 $   -- Right-associative, lowest precedence
($) :: (a -> b) -> a -> b
f $ x = f x
```

```
Prelude> length (takeWhile (<1000) (scanl1 (+) (map sqrt [1..])))
130
Prelude> length $ takeWhile (<1000) $ scanl1 (+) $ map sqrt [1..]
130
```

† Lots of Irritating, Silly Parentheses
$ is the *function application* operator: it applies the function on its left to the argument on its right.

Juxtaposition does the same thing without an explicit operator.

```haskell
Prelude> map ($ 3) [ (4+), (10*), (^2), sqrt ]
[7.0,30.0,9.0,1.7320508075688772]
```

($ 3) is the “apply 3 as an argument to the function” function, equivalent to \(f \rightarrow f \ 3 \).
Function Composition

In math notation, \((f \circ g)(x) = f(g(x))\); in Haskell,

```haskell
infixr 9 .

(.): (b -> c) -> (a -> b) -> a -> c
f . g = \x -> f (g x)
```

So \((f \cdot g \cdot h) x\) is \(f (g (h x))\)

```haskell
Prelude> map (\x -> negate (abs x)) [5,-3,-6,7,-3,2,-19,24]
[-5,-3,-6,-7,-3,-2,-19,-24]
Prelude> map (negate . abs) [5,-3,-6,7,-3,2,-19,24]
[-5,-3,-6,-7,-3,-2,-19,-24]
```

Best used when constructing functions to pass as an argument