
Modeling Galaxies: Dynamic System Simulations

Hans Montero, Rhys Murray

{hjm2133, ram2269}@columbia.edu

cs4995.003 Final Project Proposal
November 24th, 2020

1 n-body Problem

Given a set of celestial bodies with mass, initial velocity, and initial position, we would like to simulate the
motion of these bodies over time under the influence of gravity. Such simulations allow us to model the
collisions and interactions of large-scale galaxy clusters. While there is a closed form solution for n = 2,
no such formula exists for n ≥ 3, so computationally expensive numerical solutions are required. These
numerical methods vary in their approaches to calculating the effect of gravity on each body. We know
from kinematics that the gravitational force on one body by another separated by distance r is given by the
following (where G is the gravitational constant):

F = G
m1m2

r2

A näıve algorithm would run in O(n2) time, where for each time step, the algorithm calculates the net force
on a given body by iterating over the entire set of bodies and accounting for every single body, regardless of
distance. This algorithm clearly will not scale well at the galaxy-level with a huge number of bodies. Further
overhead would be added by calculating the positions of the bodies at each step and displaying them. We
must seek a more efficient algorithm if we wish to seamlessly model large systems over more fine-grained
periods of time.

2 Barnes-Hut Approximation

The Barnes-Hut Approximation seeks to cut down computation by grouping very distant masses together
into one larger mass. The first step is to divide up the n bodies into a quadtree (for 2D simulations) to group
together nearby masses. Then, for each body in the tree, we calculate the contribution of other bodies in the
same way as the näıve algorithm. However, if a group of bodies is sufficiently far away, we aggregate them
and use their combined mass and center of gravity for our computation. By leveraging this approximation,
the algorithm’s time complexity improves to O(n log n). Whether a region is considered ”distant” or not
depends on the ratio of its size to its distance from the body. If this ratio exceeds a threshold value, the region
is approximated as above. This threshold value can be adjusted depending on desired speed or accuracy of
the simulation.

3 Parallelization

To further optimize this approximation algorithm, we can parallelize the two major computational steps.
First, the quadtree construction can be delegated to four threads, as each ”quadrant” of the tree is computed
independently of the others. We expect to see some minor speed up here, as we are not guaranteed to see
even workloads for each of those quadrant constructing threads. Second, and more importantly, we can
parallelize the quadtree traversal for calculating the gravitational force on a certain body – one thread per
body. This is a perfect example of data parallelism, given the enormous amounts of bodies in realistic models
and the fact that these traversals are independent of one another. Parallelizing this step should greatly speed
up the runtime of the algorithm, much more so than the parallelization of the quadtree construction. To
visualize the algorithm at work, we’ll probably output the positions of the bodies into a csv format which
can later be ingested by a simple Python plot-renderer or even a Haskell graphics library.

1


