
 COMS W4995
Parallel Functional Programming

Project Proposal
dwo2102

The project proposal is to render the Mandelbrot set using the parallel facilities provided by the Haskell
ecosystem. When working in the continuous domain, the ‘Mandelbrot set is the set of complex numbers
c for which the function   2

cf z z c  does not diverge when iterated from 0z  ’ [1]. In other

words, if the number of iterations n goes to infinity and  cf z is not bounded, the point does not

belong in the set. It has been proven that set inclusion implies that   2cf z  (‘Radius of escape’) for

all 0n  [1].

To calculate the Mandelbrot set on a computer, i.e. in the discrete domain, the values of the complex
numbers c are restricted to this discrete domain. It is the discrete domain of c and the fact that we are
restricted to a finite number of iterations that distinguishes the discrete problem from its continuous
counterpart.

This discrete domain of c makes calculating Mandelbrot set an ideal candidate for parallel processing.
Each pixel placement in the image is the source for a complex number c . Using a function of the row
and column numbers of these pixels, we can source x, y coordinates which map to the 2d representation
of the complex numbers, where the x coordinate represents the real component of c and the y
coordinate represents the imaginary component. The mapping of a pixel to the question of set inclusion
is independent of all other pixels in the image. Therefore, since the number of pixels n is equal to the
image row count multiplied by the column count, we have n possible parallel tasks. In his book ‘Parallel
and Concurrent Programming in Haskell’ [2], Simon Marlow uses the power of the GPU to process this
volume of tasks at one time. Since this project will be using the idea of parallel ‘Strategies’ in Haskell,
processing this number of tasks simultaneously would cause more time in overhead than could be
gained by the parallel processing itself, so an alternative strategy will be devised.

As is typical when rendering the Mandelbrot set, the project will show set inclusion points in black and
gradiate the colors of points not in the set by how unstable they are, measured by how quickly they
were excluded from the set. We determine how quickly a point is excluded from the set by using the
iteration number that drove the point outside the circle of radius 2, i.e. the ‘Radius of Escape’. When the
final set is calculated an image will be created which follows these rules for each pixel. At this time, the
choice of Haskell image library is an open question. Though the Haskell Image Processing (HIP) library,
the JuicyPixels library and the Friday library would seem to be three of the most popular image libraries
on Hackage, the Haskell package archive.

References

1. Wikipedia contributors. "Mandelbrot set." Wikipedia, The Free Encyclopedia. Wikipedia, The
Free Encyclopedia, 21 Nov. 2020. Web. 22 Nov. 2020.

2. Marlow, Simon. "‘Parallel and Concurrent Programming in Haskell." O'Reilly Media, 2013,
chapter 6.

