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System Overview

The Nintendo Entertainment System (NES) can be divided into two main components, the CPU and the PPU.
More specifically, the CPU has a 6502 core, an onboard audio generation and a controller interface. The second
main component is the PPU which generates sprite and background tiles to produce game images from the
cartridge ROM. The color palette has 64 colors and the system output is 256 by 240 pixels. In this project, the
audio processing unit and sprite rendering are not implemented due to time constraint, and a single memory
module is used to encompass all memory components of the cartridge. A top level file ultranes.sv is used to
instantiate all other modules including the CPU, PPU, VRAM, clock and VGA.

APU
quck 6502 Controller
Divider cs Input 1(3:3 Sprite RAM VI;P;EM
CPU BUS PPU BUS
Program Pattern
ROM ROM
Figure 1. System Block Diagram
Memory
Name Use Access Location
Character ROM Pattern for game graphics PPU PPU address space
8kb
Program ROM Game data CPU CPU address space
32kb
VRAM 2 nametables, 2 attribute tables PPU PPU address space
2kb
Sprite RAM 64 sprites for a frame PPU/CPU PPU
256 bytes




Palette RAM sprites and background color info PPU
PPU
32 bytes
System RAM Temporary game data CPU CPU address space
2kb

Table 1. Memory Summary

Above is the memory access and usage table for the actual NES implementation. However, in our project we
will only be using a dual port RAM with a single clock module, vram.sv, to encompass the entire memory space
for VRAM and the ROM that is usually loaded from the game cartridge.

$10000 $10000
Program ROM Mirrors Mirrors
Upper Bank $0000-$3FFF $0000-$3FFF
Program ROM $C000 $4000
Program ROM Misors
e — $3F00-$3F1F
Palett $3F20
$8000 aletles Sprite Palette
$3F10
SRAM SRAM Image Palette
$6000 $3F00
. . Mirrors
Expansion ROM Expansion ROM $2000-$2EFF
$4020 $3000
/O Registers Attribute Table 3
$4000 $2FCO
Name Table 3
Mirrors $2C00
: $2000-$2007 Attribute Table 2
I/O Registers Name Tables $2BCO
Name Table 2
$2008 $2800
/O Registers Attribute Table 1
§2000 Name Table 1 e
Mirrors $24C0
$0000-$07FF Attribute Table 0
$23C0
$0800 Name Table 0
RAM RAM $2000
$0200 Pattern Table 1
Stack Pattern Tables $1000
$0100 Pattern Table 0
Zero Page
$0000 $0000

Figure 2. CPU (left) and PPU (right) Memory Map

Central Processing Unit (CPU)

On a high level, the CPU reads from the program ROM, which contains essential game information, and
constructs the basic logics of the game. It then informs the PPU of how to specifically produce a pixel by pixel
output on the screen. For this project, an existing 6502 core implemented in SystemVerilog is imported and
connected to other components in the system.



‘ 8-bit data bus ‘

g 1

ROM
CPU RAM /0
MMC

it it

bit control bus ‘

{}

‘ 16-bit address bus ‘

Figure 3. CPU Memory Communications

The CPU is integrated on an ASIC (labelled RP2A03), that also integrates the Audio Processor, a DMA Unit, a
clock divider and a few additional pins related to controller input. The 16-bit address bus is used for the address
of a requested location. It is directly generated by the CPU. The CPU is all together able to address up to 64KB
of memory or memory-mapped peripherals.

The 8-bit control bus informs the connected components of whether the request is read or write. The 8-bit
bidirectional data bus is used to read or write a byte to the selected address. Due to its bidirectionality, each
peripheral is able to write to it at different times as specified by the address bus. To access the read-only ROM, a
MMC is used for bank switching. The I/O registers are used to communicate with other components of the
system.
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Figure 4. 6502 Bus Timing Diagram
Picture Processing Unit (PPU)

There are two modules to render the background and sprite respectively on a per pixel basis. There are 8 PPU
registers and they are accessed by the CPU's address and data lines. One of the most crucial components of the
PPU is its integration with the VGA. To synchronize the PPU and the VGA together, a vga module is defined
for which it takes the PPU data as input and converts it to color output based on a look-up table, which takes in
PPU data and outputs its VGA RGB values for respective pixels. A scanline buffer is built in VGA to hold
incoming PPU data. Below is a comprehensive block diagram of the PPU and its related components.
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Figure 5. PPU Block Diagram
PPU Registers
Register Details
$2000 - PPU Control Register - write
PPUCTRL Contains flags that describe PPU operation
LSB
NN - Designates name table base address (0=2000, 1=2400, 2=2800, 3=2C00)
I - VRAM address increment per CPU read/write of PPUDATA ($2007) (0: increment 1,
going across, 1:increment 32, going down)
S - Sprite table base address (0=0000, 1=10000) *only in 8x8 mode
B - Background pattern table address (0=0000, 1=1000)
H - Sprite size (0=8x8, 1=8x16)
V - PPU as master or slave (0: read from EXT pins, 1:output color to EXT pins)
N - 1: sets a non maskable interrupt at start of BLANK
MSB
2 LSBs are MSBs of scrolling location (bit 0 - adds 256 to X scroll, bit 1 - adds 240 to Y
scroll) After power on writes to register are ignored for 30k cycles
$2001 - PPU Mask Register - write
PPUMASK Controls the rendering of sprites and background tiles
LSB
G - Greyscale (0: normal, 1: grey)




m - 1: Show background is leftmost 8 pixels, O:hide

M - 1: Show sprite in leftmost 8 pixels, 0: hide

b - 1: Show Background

s - 1: Show Sprite

R - 1: Emphasize red

G - 1: Emphasize green

B - 1: Emphasize blue

MSB

Bits 1&2 (m&M) enable rendering for leftmost 8 pixel columns - this is useful for scrolling
(when you want parital sprites or tiles to scroll in from the left)
Bits 3&4 (b&s) Render background or sprite respectively

If changes to VRAM outside of VBLANK set b&s to 0.

$2002 -
PPUSTATUS

PPU Status Register - read

LSB

(0-4) LSBs previously written into PPU Reg

O - Sprite overflow, flag is set during sprite evaluation, cleared at second tick of pre-render
line

S - Set when non zero pixel of sprite zero overlaps non zero background pixel. Cleared at
second tick of pre render line

V - Set at tick 1 of of line 241 (1 for in VBLANK, 0 for not). Cleared after reading this
register and second tick of pre-render line. Reading does not clear O&S

$2003 -
OAMADDR

OAM Address - write

Write address of OAM to access.

Set to 0 during 257-320 ticks of pre render and visible scan lines (Sprite loading interval)
Value at tick 65 of visible scan lines determines where in OAM sprite evaluation starts
regardless of byte type and every byte following is interpreted accordingly. This effectively
hides the sprites before the first address is accessed.

$2004 -
OAMDATA

OAM Data - read/ write
Writes will increment OAMADDR after the write.
Reads do increment, occur during VBLANK or forced blanking.

$2005 -
PPUSCROLL

PPU Scrolling position register - write x2

Typically written to during VBLANK ( can be modified during rendering sp split the
screen)

Tell PPU which pixel in the nametable being used is the top left pixel. Nametable is selected
using NN in PPUCTRL.

$2006 -
PPUADDR

PPU Address register - writex2
Specifies the 16-bit address in VRAM that $2007 will use
CPU writes to VRAM through PPUADDR and PPUDATA




Upper byte is written first.
BYTE I: upper 8-bit of effective address
BYTE 2: lower 8-bit of effective address

$2007 -
PPUDATA

PPU Data - read / write

After access I bit in PPUCTRL determines how much to increment address.
Only accessed during VBLANK or forced blanking.

After access needs to reload scroll position.

$4014 -
OAMDMA

OAMDMA register - write

Located on the CPU. Used to upload 256 bytes from CPU $XX00-4XXFF to PPU OAM.
Transfer takes 513/514 cycles during which the CPU is suspended. Should take place during
VBLANK, writes through OAMDATA or not suited.

Table 2. PPU Registers

Background Rendering

Name tables contain 8x8 pixel tiles for displaying graphics, it is the layout of a frame's background. In total, the
name tables contain 32x30 tiles (256x240 pixels). Each tile contains a single byte in PPU memory. It only holds

the tile number of the data that is kept in the pattern table

The pattern table holds the actual 8x8 tile data and also the lower 2 bits of the 4 bit color matrix needed to access
all 16 colors. It has the static info from the ROM that PPU can read only.

VRAM Contents of Colour
Addr Pattern Table Result
$0000: %00010000 = $10 ——+ ...l.... Periods are used to
$5 %$00000000 = $00 \ ..2.2... represent colour 0.
%$01000100 = $44 [ .3...3.. Numbers represent
%$00000000 = $00 +-- Bit 0 p 2. the actual palette
$11111110 = $FE | 1111111. colour #.
$00000000 = $00 | 2 mii 2.
s $10000010 = $82 | S 3
$0007: %00000000 = $00 —-—+  ........
$0008: %00000000 = $00 --+
o $00101000 = $28 |
$01000100 = $44 |
$10000010 = $82 +-- Bit 1
%00000000 = $00 |
$10000010 = $82 |
— $10000010 = $82 |
$000F: %00000000 = $00 —-+

Figure 6. Pattern Table

In the attribute table, each byte represents a 4x4 group of tiles on the screen
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| Square 0

| #0 #1

| #2 #3
e el
| Square 2

| #8 #9

| #A #B

ST R R ST

+—————+

Attribute Byte
(Square #)

Fe——— Upper

____________ +

Square 1 | #0-F represents an 8x8 tile
#4 #5 |
#6  #7 | Square [x] represents four (4) 8x8 tiles
———————————— + (i.e. a 16x16 pixel grid)
Square 3 |
#C #D |
#E #F |
____________ +
two (2) colour bits for Square 0 (Tiles #0,1,2,3)
two (2) colour bits for Square 1 (Tiles #4,5,6,7)
two (2) colour bits for Square 2 (Tiles #8,9,A,B)
two (2) colour bits for Square 3 (Tiles #C,D,E,F)

Figure 7. Attribute Table

In the palette table, every frame has its own subset of palette of the system palette. And the frame palette is
dynamic meaning that two frames could have different sets of palettes that they use to produce colors. CPU
sends palette entries to the PPU. In a frame palette, there are 8 palette groups each with 4 colors. 0-3 are for

background and 3-7 are for sprites.

The color information at a specific pixel is determined by the priority mux shown below.

Color Palette
Address

Sprite Rendering

Object Enable
$2001[4]

Output from

¢

0|e———

I

Background Enable
$2001[3]

Figure 8. Priority Mux

Sprite Rendering

Output from
Background Rendering

Default Background
$2001[7:5]

There are 64 sprites displayed in any given frame . The High-level memory is constructed by the CPU during
vertical blank and there are only 8 sprites per scanline due to time constraint. Sprite buffers are used for pattern

data for the sprite, color attributes, priority information, and an exact horizontal coordinate.

In summary, sprite rendering follows the below steps:
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1. PPU scans through the y coordinates in sprite RAM to determine whether the sprite should be displayed on
the next scan line

2. [If so store this data to the secondary OAM or store the sprite’s index number. The secondary OAM is only
used to store sprites for the next scanline.

3. Fetch and store pattern info in sprite buffers (shift registers) to make sure no conflict occurs with range
checking

4. Pixels output uses the sprite buffers which contain two shift registers and a horizontal coordinate counter.
The background gets drawn to a separate buffer.

5. The coordinate counter tells whether the sprite should display and and clocks the shift registers to output
data.

OAM
256 bytes
64 sprites 4 bytes each

Iy
8 bit data 8 bit address

Sprite Buffer

Pixel output
P Stput |

Sprite Buffer Secondary OAM
24 Bytes
Sprite Attribute 3 Bytes per Sprite
Register
8 bit address 8 bit data
Pattern ROM

8kb
2 Pattern Tables

Figure 9. Sprite Renderer
PPU Rendering Example - Donkey Kong

Nametable:

e Tiles of Donkey Kong: nametable is the layout of the frame’s background
o (00,00) upper left to (1F,1D) bottom right

e FEach tile contains a single byte in PPU memory

e The numbers 24 and 62 shown below are just indices into the pattern table
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Figure 10. Tiles of Donkey Kong

Pattern Table:

e For tile at position (09,10) it has index 01
o In the pattern table at 01 we have 16 bytes and separating them into low and high bytes to get

o 0:7183818 1818 18 7E 00
o 8:F 000000 00 0000 0000
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Figure 13. Donkey Kong Example Pattern Table Combination Without Palette

System Palette:
e Define by NES a finite set of colors numbered from 00 to 3F

60 61 02 63 04 05 06 69 OA OB 6C
(N 11 12 13 14 15 16 19 1A 1B 1C

20 21 22 23 24 25 26 27 28 29 2A 2B 2C
36 31 32 33 34 35 36 37 38 39 3A 3B 3C

Figure 14. System Color Selection
Frame Palette:
e Every frame has its own subset of palette of the system palette
e Frame palette is dynamic
o CPU sends palette entries to the PPU so different frame can use different frame palette
e 8 palettes and each sub palette group has four colors
o 0-3 are for backgrounds and 4-7 are for sprites

1 2 3 3

0
oF 15“12 eFmoz 17 o [ELDE] 06 0 30 2 24
1 2 3

0

or 02 ] 16 0l 3o 27 24 ) ze 37 oF oem 02

Figure 15. Palette RAM

4

o For the oil drum
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o (04, 19)(05,19) (04,1A) (05,1A)
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Figure 16. Nametable For Oil Drum

Pattern Table Low and H
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. Combining Low and High Bitmap

Figure 18

e There are values between 00 and 11
e This is the index into the frame palette
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Figure 19. Palette RAM

e We will use the attribute table to know which palette we are accessing
e In this case we are accessing palette table 0

Wl o o o | ||l 0l || @ @ oW
Wl o | oo | 0o ool | 0ol @ o oW

Figure 20. Coloring After Accessing the Palette Table
Attribute Table:
e The tiles are divided into blocks, each block is a 4x4 tiles
e Continuing with the oil drum example we have
o Inblock (1,6)

14



Figure 21. Divided Block

o A block above is divided into 4 tiles, 0 1 2 3
e In the attribute table each block is a single byte

(0]

(0]
(0]
(0]

]

Four 2 bit value
Quad Ois bit0 and 1
Quad 1 isbit2 3
Quad 2 is bit4 5
Quad 3 isbit6 7

e In our example, at the location of the oil drum the byte is 0 so

Figure 22. Index into the Palette RAM

e Here is an example of Donkey Kong

0 1 F E) 4 5 3 7

00 01 02 03 04 05 06 07 08 09 OA 0B OC @) OF OF 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E IF

24 B5 A3 A7 (9 24 3F 24
B2 B6 A4 A8 (A (D 3F 24
68 6C 69 6B 6D 6A 30 30
9E (7 A6 AA BF Bl 3F 24

Figure 23. Example of Donkey Kong in Nametable

e Looking up values in the pattern table we have the following

15



Figure 24. Donkey Kong Divided into Blocks

e For block (1,1) in the attribute table we read AA
o Each region of the four regions will use palette 2

Figure 25. Block (1,1) in Attribute Table

e For block (2,1) in the attribute we read 22
o Quad 0 and 2 will be palette 2 and 1 and 3 will be palette 0

Figure 26. Bock (2,1) in Attribute Table

16
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Figure 27. Donkey Kong Rendered using Palette RAM
Sprites:

e a sprite has 4 bytes that can be accessed in the OAM: y pos, x pos, tile index and attribute.
e For Mario

. Tile Att X
(7 N

CF 5 0 30
¢7 6 0 38
CE 7 0 38

Figure 28. Mario Sprite in OAM

e Using the same procedures for background for tile IDs and combining the bit maps

e @ o @
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e W W W W N Wl NNNINN W W
o W W W W W el e NN RN W e
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© © o o o o o o/lo| o o o o o o @
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]
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0
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Figure 29. Mario in Nametable
e For Mario, the attribute byte is 00
o so we use palette 0 and in the palette frame it’s palette 4
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0 2 3

eFmez 17 0 30 36 K 0 30 2¢ 24

0l 30 27 24 or 16 [ IEL oF ﬂﬁmﬁl

Figure 30. Palette RAM
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Figure 31. Mario Sprite Rendered

PPU Rendering Figures in Summary

[ PPU renders 262 scan lines per frame
4 240 visible scan lines
[ 20 fetching data (vblank)
d 2 dummy
[ Only can write one pixel per PPU cycle
[ Takes 341 PPU cycles per scanline
[ 256 for rendering; remaining are used to fetch data from nametables, etc.
[ (2 clock cycles per pfetch, PPU multiplexes bottom 8 VRAM Address pins to also use as data
pins)
4 For each frame:
4 -1 scanline: prefetch tile info for first two tiles. No pixel rendering for this scanline
[ 0-239 scanline: render background and sprite. The program does not access PPU memory at this
time unless rendering is off.
[ 240 scanline: idle. Vblank is set after this scanline.
[ 241-260 scanline: vblank lines, CPU can access VRAM because PPU makes no memory access
during these scanlines.
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4 For each visible scanline (0-239):
O 0cycle: idle
[ 1-256 cycle: visible pixels. Each memory access takes 2 PPU cycles and each tile needs 4 for
nametable, attribute table, pattern table low and pattern table high.
4 Output pixel based on VRAM
[ Prefetch next tiles. PPU can only fetch an attribute byte every 8 cycles.
[ Sprite evaluation for next scanline
257-320: prefetch tiles data for sprites on the next scanline

321-336: prefetch the first two tiles for the next scanline and loaded to the shift registers
337-340: unknown fetches

Oood

NTSC PPU Frame 222222222222222222 22 33 3333 3333333333333333
Timing 11111111 66 45555555555666¢68660 78 00 12222222222333333333313
0123456739012345 45 901234567890123456 90 45 0012345678501234567830

o [ oo | e SR o o 22 N e G e | e | e ot [ e |

Visible frame | o | o | e [ 10 m\‘..,..\;;-g, [irore [ e e | o e [ o |

IS
oy [ arops [ i oE TR

239
(Post-render line) 240
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dotscaniine counters, as seen in Visual 2C02. the last tick of the last NT fetch takes place at {0,0) on odd frames, replacing the idle
- Sprite zero hits act as If the visible image starts at h = 2 (e the  0°F"
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For beginning emulator development you might want to lgnore most of these detalls. Focus on The Skinny on NES Scrolling and understanding how v/t reg updates
work. Starting with some game that doesn't scroll at all like Donkey Kong Is easlest (you could just draw the first nametable). You can ignore the exact way VRAM is

accessed, ignore the tile prefetch at the end of the scanifne, assume all the scroll bits are loaded from t at the end of the of the pre-render line instead of In stages,
Diagram by Ulfalizer with help from heannaich, Quietust, and others. Last updated Aug 6 2013. and view scrolling as Just moving around entire nametables at a high fevel, and mest things will still work just fine. THings start to get messy only when you get to
e e ] e e |21 lones 2 ease reformatting and mid-frame state changes, where you will need to understand how v/t work at least.
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Figure 32. Timing Diagram Form NESDev Wiki
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Figure 33. Blank Areas Used During CPU Cycles/Data Fetch
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Linux Userspace Utilities

There are three main components:

1. Avlon bus interface to the FPGA

2. Linux device driver for memory-mapped access to avalon-bus

3. Userspace utility to issue [OCTL’s to modify RAM/ROM onboard FPGA

We have an installer script to build device driver, install kernel module, and install pre-compiled userspace
utility defined as 'ultranes' binary show below.

$ ultranes # print current value on address bus
$ ultranes reset 1 # set CPU reset high
$ ultranes reset @ # set CPU reset low

$ ultranes load cpu bin/test.hex # load test.hex ROM into CPU RAM
$ ultranes load ppu bin/vtest.hex # load vtest.hex ROM into PPU RAM

$ ultranes load dk bin/dk.nes # load dk.nes ROM into CPU+PPU RAM

$ ultranes load mario bin/mario.nes # load mario.nes ROM into CPU+PPU RAM
$ ultranes write 55 128 # write value 55 to address 128

$ ultranes help # call in backup

Figure 32. Ultranes binary

Clocking/Timing Figures

The total clocking scheme is facilitated via a global clock (50MHz) and respective clock enables. For the VGA,
it is running at double the resolution of the PPU (so 4x the number of pixels), the PPU is 4 times slower than the
VGA so they are in sync. Each PPU frame will take 89,342 PPU cycles and each VGA frame will take 357,368
VGA cycles (exactly 4x more). To ensure correct timing, a clock module is defined and several clock enables
are fed into other modules including the CPU, PPU and VGA.

50 MHz global clock

25 MHz VGA clock (50/2)
6.25 MHz PPU clock (50/8)
2.083 MHz CPU clock (50/24)

clk50=0
cpu _ce=1
ppu_en=1
vga _en=1

Figure 33. Timing Simulation

Arbitration of Shared Resources

CPU/PPU share memory, CPU updates mem (VRAM) during VBlank. A dual-port block RAM is used for PPU
and CPU to access memory separately.
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Hardware/Software Interface

The hardware/software interface exists between the FPGA implementation of the NES and the Linux host which
will load ROM’s (game cartridges) onto the board.

Resource Requirements

The DE1-SoC has 64MB SDRAM, far greater than any combination of NES + ROM cartridges with additional
RAM (no more than 1MB). Furthermore, the original 6502 had ~3,200 transistors, while our FPGA has 85,000.
The 6502 core we plan to use occupied only 8% of the flops and 7% of the LUTs in the Xilinx xc3s500e FPGA.
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Appendix

Sprite DMA Unit: For updating to the internal PPU memory, there are memory mapped registers at $2003 and
$2004. $2003 is used to set the internal address, $2004 writes a value with auto-increment.

Since most games would want to update all 256 bytes of sprite data in each frame, the 2A03 integrates a unit
that can halt the CPU and copy one memory page to $2004 directly.
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+5¥ -- |36 72| -- GND
€IC toMB <- |35 71| <- CIC CLK
cIC toPak -> |34 70| <- CIC +RST
PPU D3 <> |33 69| <> PRU D4
PPU D2 <> |32 68| <> PPU D5
PPU D1 <> |31 67| <> PPU D6
BEU DO <> |30 66| <> PEU D7
PPU A0 -> |29 65| <- PPU Al3
PEU Al -» |28 64| <- PPRU Al2
PPU A2 -> |27 63| <= PPU AlD
PPU A3 -> |26 62| <- PPU All
PPU A4 -> |25 61| <= PPU A9
PPU AS -> |24 60| <- PPU AB
PPU A6 -> |23 59| <- PPU A7
CIRAM AlD <- |22 58| <- PBU /al3
PPU /RD -> |21 57| -> CIRAM /CE

EXF 4 |20 56| == PRPU /WR
EXP 3 |19 55| EXP 5
EXF 2 |18 54| EXP 6
EXP 1 |17 53] EXE 7
EXP 0 |16 52| EXP 8
fIRQ <- |15 51| EXP 9

CPU R/W => |14 50| <= /ROMSEL (/Al5 + /M2)

CPU A0 -> |13 49| <> CPU DO

CPU Al -> |12 48] <> CPRU D1

CPU A2 -> |11 47| <> CPU D2

CPU A3 -> |10 46| <> CPRU D3

CPU A4 -> |09 45| <> CPU D4

CPU A5 -> |08 44| <> CPU DS

CPU A6 -> |07 43| <> CPU D&

CPU A7 -> |06 42| <> CPU D7

CPU A8 -> |05 41| <- CPU Al4

CPU A9 -> |04 40| <= CPU Al3
CPU AlQ -> |03 39| <- CPU Al2
CPU All => |02 38| <= M2

GND == |01 37| <= SYSTEM CLK



