
csee 4840
Embedded System Design

Lab 3: Peripherals and Device Drivers

Stephen A. Edwards
Columbia University

Spring 2020

Implement on the fpga a memory-mapped peripheral that can receive communication
from the arm processors on the Cyclone V. Communicate with your peripheral through a
Linux userspace program that accesses a device driver you have written.
Your peripheral should display a ball on the vga screen at coordinates given to it through

so�ware. Your device driver should implement an ioctl that takes coordinates from the user
and sends it to your peripheral
1 Introduction
In this lab, you will control your own hardware from your own so�ware, communicating
through a Linux device driver. We supply a base hardware design to extend and a working
example of a vga peripheral you will have to modify, and a working device driver for the
existing peripheral that you will have to adapt to work with your own peripheral.
You will implement a video bouncing ball in this setting. Your peripheral will generate an

vga raster consisting of a ball at a particular location, your userspace C program (so�ware)
will make this ball bounce around the screen, and your device driver will mediate between
your program and your peripheral.
2 Compile the vga Component Into a New fpga Image
In this section, you will tell Qsys about a new peripheral component, connect it ultimately to
the arm processors, and synthesize a new fpga con�guration bitstream.
2.1 Create the vga Ball Component
Download lab3-hw.tar.gz from the class website and unpack it on your workstation. Change
to the lab3-hw directory. Run qsys-edit soc_system.qsys, which will bring up a GUI.
Create a new vga_ball component and connect it to the base design. Select File→New

Component. �is should open the Component Editor window.
In the Component Type tab, set Name to vga_ball and Display Name to VGA Ball.

1

In the Files tab, clickAdd File. . . under Synthesis Files and select the vga_ball.sv �le. Click on
Analyze Synthesis Files. �is should quickly complete successfully; close the pop-up window.
Set Top-Level Module to vga_ball. Some warnings and errors should appear in theMessages
tab; we will �x them.
2.2 Assign the Interface Signals on the vga Ball Component
When Qsys analyzes the synthesis �les, it makes some good guesses about the meaning of
each signal on the peripheral, but it is not perfect. Below, you will �x these mistakes.
Click on the Signals &

Interfaces tab. Click on
avalon_slave_0 and set its
Associated Reset to reset. Click
on <<add interface>> in the
le� box and select Conduit.
Set the name of the new
conduit to vga.
Select View→Signals from

the top menu. �is should
bring up a new Signals tab.
Change the Interface col-

umn of each of the vga_ sig-
nals to vga. Change the Signal
Type of each signal to a lower-
case version of the name a�er
the vga_, e.g., vga_blank_n
should become blank_n.

Your signals show now appear like the list on the right. If it complains about avalon_slave_0
not having an associated reset, click on Signals & Interfaces, click on avalon_slave_0, and set
Associated Reset to reset.
Once you have eliminated all errors, click on Finish. It will warn you that it is saving

vga_ball_hw.tcl; click on Yes, Save. �e Component Editor window should close.
Open vga_ball_hw.tcl with a text editor and add the following three lines a�er themodule

vga_ball section:

set_module_assignment embeddedsw.dts.vendor "csee4840"

set_module_assignment embeddedsw.dts.name "vga_ball"

set_module_assignment embeddedsw.dts.group "vga"

�ese make the device show up as compatible with csee4840,vga_ball-1.0 in the .dtb �le,
which we will discuss below.

2.3 Connect the vga Ball Component
Qsys now knows about your custom component, so connect it to the rest of your design.
In Qsys, add an instance of the new VGA Ball component by selecting it under “Project” in

the library and clicking on the + Add button. By default, it will be named vga_ball_0.
On the new vga_ball_0 component instance, connect the clock to clk from clk_0 and connect

reset to clk_reset from clk_0.
Connect the avalon_slave_0 port on vga_ball_0 to the h2f_lw_axi_master port on the hps_0

component (this is the slower bus from the arm processors).
Double-click to export vga_ball_0’s vga conduit in the Export column. Set the name of the

export to vga.
�e System Contents tab should now look like this:

You may ignore the “user 0 clock frequency” warning as that clock is unused.
Save the system (File→Save), which should write soc_system.qsys.
Generate the Verilog for the design by clicking on Generate HDL. . . (accept the defaults) or

runningmake qsys.

2.4 Connect the vga Peripheral to its Pins
Your vga Ball peripheral needs to communicate through its conduit through pins to an
o�-chip vga dac. To do this, edit soc_system_top.sv with a text editor to add the following
connections within the instance of soc_system near the end of the �le:

.vga_r (VGA_R),

.vga_g (VGA_G),

.vga_b (VGA_B),

.vga_clk (VGA_CLK),

.vga_hs (VGA_HS),

.vga_vs (VGA_VS),

.vga_blank_n (VGA_BLANK_N),

.vga_sync_n (VGA_SYNC_N)

Delete the two assign statements to the variousvga signals at the bottomof soc_system_top.sv.
2.5 Compile the Hardware Design with Quartus
Either run make quartus or open the soc_system project in Quartus to compile the Qsys-
generated system (whose source is in the soc_system subdirectory) to generate the “sram
object �le” output_�les/soc_system.sof.
A�er Quartus compilation, convert the .sof �le to an .rbf �le by runningmake rbf.
Copy the output_�les/soc_system.rbf into the boot partition of your sd card. You canmount

your sd card on your workstation and copy the �le. Alternatively, mount the boot partition
by runningmount /dev/mmcblk0p1 /mnt on your DE1-SoC then use scp to copy the �le from
your workstation to your board, e.g.,
scp sedwards@micro11.ee.columbia.edu:lab3/soc_system.rbf /mnt
Make sure the �le has actually been written out to the card: type sync at the command-line.

3 Tell the Linux Kernel About Your Peripheral
�e Linux kernel employs a persistent data structure known as the Device Tree to describe
the structure of a hardware platform. It contains information about processors, memory
regions, bus bridges, and most importantly, the types and memory location of peripherals
such as the vga Ball. Qsys generates a similar soc_system.sopcinfo �le that, in concert with
the soc_system_board_info.xml �le, can be used to generate an apporiate soc_system.dtb �le, a
binary representation of the Device Tree that is normally loaded as part of the boot process.
Generate soc_system.dtb by runningmake dtb. �is needs sopc2dts to be in your path, which

you can add by running embedded_command_shell.sh (on the lab computers, this is an alias;
just type it at the command line).

Verify that the vga Ball peripheral appears in the soc_system.dts �le, which should include

vga_ball_0: vga@0x100000000 {

compatible = "csee4840,vga_ball-1.0";

reg = <0x00000001 0x00000000 0x00000008>;

clocks = <&clk_0>;

}; //end vga@0x100000000 (vga_ball_0)

�e entry itself comes from the vga_ball_0module instance in Qsys (soc_system.qsys). �e
compatible string is controlled by the set_module_assignment statements you should have
added to the vga_ball_hw.tcl �le.
As for the .rbf �le, copy the soc_system.dtb �le to the boot partition on your sd card.

4 Communicate with Your Peripheral�rough So�ware
Connect a vgamonitor and a usb keyboard to your board. Boot Linux on your board from
the sd card with your new soc_system.rbf and soc_system.dtb �les (your sd card from lab2 is
otherwise �ne). If your board is already powered on, restart it by typing reboot (don’t just
power-cycle it).
Connect the console port (mini-usb cable) to your workstation and run screen /dev/ttyUSB0

115200 as you did in lab 2.
Boot Linux on your board. It should go through the normal boot process and you should

see a white box against a colored background on the vgamonitor.
Verify that the kernel sees the vga Ball device in the device tree:

ls "/proc/device-tree/sopc@0/bridge@0xc0000000/"

#address-cells clock-names compatible ranges reg-names

#size-cells clocks name reg vga@0x100000000

more "/proc/device-tree/sopc@0/bridge@0xc0000000/vga@0x100000000/compatible"

csee4840,vga_ball-1.0

4.1 Compile and Run the Sample Program
On your board, download and install linux-headers-4.19.0.tar.gz, which includes theMake�le
for compiling kernel modules.
wget http://www.cs.columbia.edu/~sedwards/classes/2019/4840-spring/linux-headers-4.19.0.tar.gz

tar Pzxf linux-headers-4.19.0.tar.gz

ls /usr/src/linux-headers-4.19.0

Documentation arch drivers init mm scripts usr

Kconfig block firmware ipc modules.order security virt

Makefile certs fs kernel net sound

Module.symvers crypto include lib samples tools

Install the kernel module mangement programs (e.g., insmod, rmmod).

apt install -y kmod

Download lab3-sw.tar.gz from the class website to your board, unpack it, compile it, install
the kernel module.
wget http://www.cs.columbia.edu/~sedwards/classes/2019/4840-spring/lab3-sw.tar.gz

tar zxf lab3-sw.tar.gz

cd lab3-sw

Compile the device driver and user program, install the kernel module, and verify that it
works. �is should look like

make

make -C /usr/src/linux-headers-4.19.0 SUBDIRS=/root/lab3 modules

make[1]: Entering directory ’/usr/src/linux-headers-4.19.0’

CC [M] /root/lab3/vga_ball.o

Building modules, stage 2.

MODPOST 1 modules

CC /root/lab3/vga_ball.mod.o

LD [M] /root/lab3/vga_ball.ko

make[1]: Leaving directory ’/usr/src/linux-headers-4.19.0’

cc hello.c -o hello

insmod vga_ball.ko

lsmod

Module Size Used by

vga_ball 16384 0

./hello

VGA ball Userspace program started

initial state: f9 e4 b7

ff 00 00

00 ff 00

00 00 ff

ff ff 00

...

ff 00 ff

VGA BALL Userspace program terminating

rmmod vga_ball

rmmod: ERROR: ../libkmod/libkmod.c:514 lookup_builtin_file() could not open

builtin file ’/lib/modules/4.19.0/modules.builtin.bin’

You may ignore the error from rmmod.
“make” compiles the kernel module (vga_ball.ko) and the userspace program (hello).
“insmod” loads the generated kernel module. In the supplied device driver, doing this

should change the display. “lsmod” lists installed modules.

�e hello program is a userspace program that communicates with the vga_ball device
driver through the ioctl system call. It opens the device and reads and writes its state, which
changes the color of the background.
“rmmod” removes the kernel module, which is necessary any time you modify and re-

compile the module.
5 What to Do
Modify the hardware and so�ware in the skeleton you have been provided to display a
bouncing ball. Change both the interface and contents of the hardware peripheral so that it
displays a stationary ball at a so�ware-controllable set of coordinates. Have your peripheral
respond to writes to one or more addresses that control the location of the ball.
Adapt the provided device driver to communicate with your peripheral. E.g., create an ioctl

that sets the coordinates of the ball.
Write a userspace program that bounces the ball by repeatedly communicating the new

coordinates to your peripheral through your device driver.
6 What to turn in
Find an overworked TA or instructor, and show him/er your bouncing ball. Once s/he is
satis�ed, collect just the �les you wrote or modi�ed for this lab in a directory called “lab3,”
make a tarball with tar zcf lab3.tar.gz lab3, and submit that via Courseworks. �is should
include the SystemVerilog for your peripheral and source for your device driver and userspace
program.
Do not submit everything in your lab3-hw directory: it is too big.

7 Qsys Hints
7.1 Editing the Source of Your Qsys Component
If you modify the SystemVerilog for your hardware component without changing its in-
terface, regenerate your system with Qsys then re-run Quartus. Do this by runningmake
qsys-clean ; make qsys or open Qsys from Quartus (Tools→Qsys) and click on Generate
HDL. . . .

If you modify the interface your hardware component (e.g., to change the number of
visible registers, add a read function, or change the signals passed through the conduit), edit
the component. Start Qsys (e.g., run qsys-edit), open your .qsys �le, select your component
under “Project,” and click “Edit.” �is should bring up the Component Editor window.
Re-analyze the synthesis �les as you did in Section 2.1, make sure the interface signals are

assigned correctly, and click Finish.
Every time you update the compoent, re-insert the set_module_assignment directives

mentioned in Section 2.2.
In Qsys, select File→Refresh System (or just press F5). It should complete with a reassuring

warning indicating the version of your component has changed. Hovering over the instance
of your component should also indicate its version has changed. Save your project a�er doing
this to update the .qsys �le.
Now, select Generate→Generate. . . to instruct Qsys to regenerate your system so Quartus

can recompile it. Alternately, run make qsys-clean ; make qsys, which does the same thing
from the command line.

7.2 Don’t Edit Copies
Do not edit the �les in the synthesis directory (e.g., in lab3-
hw/synthesis/submodules). �ese are copied by Qsys and will
be overwritten the next time Qsys runs.
7.3 Viewing Components as Blocks
Select a component and then View→Block Symbol. �is shows
how Qsys interprets the interface to a component.

	Introduction
	Compile the vga Component Into a New fpga Image
	Create the vga Ball Component
	Assign the Interface Signals on the vga Ball Component
	Connect the vga Ball Component
	Connect the vga Peripheral to its Pins
	Compile the Hardware Design with Quartus

	Tell the Linux Kernel About Your Peripheral
	Communicate with Your Peripheral Through Software
	Compile and Run the Sample Program

	What to Do
	What to turn in
	Qsys Hints
	Editing the Source of Your Qsys Component
	Don't Edit Copies
	Viewing Components as Blocks

