Semiconductor

Semiconductor
noun

1. A substance, such as silicon or germanium, with electrical conductivity intermediate between that of an insulator and a conductor

2. A semiconductor device
Sand into Silicon

Silica a.k.a. SiO$_2$ a.k.a. Quartz

SiO$_2$ + 2 C \rightarrow Si + 2 CO

Elemental, amorphous silicon

Monocrystalline Silicon Ingot
Doping Silicon Makes It a Better Conductor

Undoped (pure) silicon crystal

- Si – Si – Si –
- Si – Si – Si –
- Si – Si – Si –

Not a good conductor

P-type (doped) silicon:

- Si – Si – Si –
- Si – B – Si –
- Si – Si – Si –

Boron atom steals a nearby electron

N-type (doped) silicon:

- Si – Si – Si –
- Si – As – Si –
- Si – Si – Si –

Arsenic’s extra electron jumps loose
A PN Junction aka A Diode

Depletion region

p (holes) | n (electrons)

Ammeter

0 V
A PN Junction aka A Diode

Forward biased: current flows
A PN Junction aka A Diode

-2 V

Reverse biased: no current flow

Ammeter

Depletion region

p (holes) n (electrons)
An N-Channel MOS Transistor

Gate at 0V: Off

Ammeter
An N-Channel MOS Transistor

Gate positive: On

SiO₂

Drain

Source

n

p (holes)

n

3 V

Ammeter

3 V

Gate

0
An inverter is built from two MOSFETs:
An n-FET connected to ground
A p-FET connected to the power supply
The CMOS Inverter

When the input is near the power supply voltage ("1"),
the p-FET is turned off;
the n-FET is turned on, connecting the output to ground ("0").
n-FETs are only good at passing 0’s
The CMOS Inverter

When the input is near ground ("0"), the p-FET is turned on, connecting the output to the power supply ("1"); the n-FET is turned off.

p-FETs are only good at passing 1’s
The CMOS NAND Gate

Two-input NAND gate: two n-FETs in series; two p-FETs in parallel
The CMOS NAND Gate

Both inputs 0:
Both p-FETs turned on
Output pulled high
The CMOS NAND Gate

One input 1, the other 0:
One p-FET turned on
Output pulled high
One n-FET turned on, but does not control output
The CMOS NAND Gate

Both inputs 1:
Both n-FETs turned on
Output pulled low
Both p-FETs turned off
The CMOS NOR Gate

Two-input NOR gate:
- two n-FETs in parallel;
- two p-FETs in series.
Not as fast as the NAND gate because n-FETs are faster than p-FETs.

CMOS NAND is GOD

\[A + B = \text{NOR} \]
A CMOS AND-OR-INVERT Gate

\[(A + B) \quad (C + D) \]

\[A \parallel B \quad C \parallel D \]

\[A \overline{B} + C \overline{D} \]

Pull up

Pull down

A series B

\[A \overline{B} \parallel C \overline{D} \]
Pull-up and Pull-down networks must be complementary; exactly one should be connected for each input combination.

Series connection in one should be parallel in the other.
CMOS Inverter Layout

Cross Section Through N-channel FET

Top View
Intel 4004: The First Single-Chip Microprocessor

4001: 256-byte ROM + 4-bit IO port
4002: 40-byte RAM
4003: 10-bit shift register
4004: 740 kHz 4-bit CPU with 45 instructions (2300 transistors)
Intel 4004 Masks
Intel 4004 Die Photograph