
Types and Typeclasses

Stephen A. Edwards

Columbia University

Fall 2019

Types in Haskell

Haskell is statically typed: every expression’s
type known at compile-time

Haskell has type inference: the compiler can
deduce most types itself

Type names start with a capital letter (Int,
Bool, Char, etc.)

GHCi’s :t command reports the type of any
expression

Read “::” as “is of type”

Prelude> :t 'a'
'a' :: Char

Prelude> :t True
True :: Bool

Prelude> :t "Hello"
"Hello" :: [Char]

Prelude> :t (True, 'a')
(True, 'a') :: (Bool, Char)

Prelude> :t 42 == 17
42 == 17 :: Bool

Some Common Types

Bool Booleans: True or False

Char A single Unicode character, about 25 bits

Int Word-sized integers; the usual integer type. E.g., 64
bits on my x86_64 Linux desktop

Integer Unbounded integers. Less efficient, so only use if you
need really big integers

Float Single-precision floating point

Double Double-precision floating point

The Types of Functions

In a type, -> indicates a function

Prelude> welcome x = "Hello " ++ x
Prelude> welcome "Stephen"
"Hello Stephen"
Prelude> :t welcome
welcome :: [Char] -> [Char]

“Welcome is a function that takes a list of characters and produces a list of
characters”

Multi-argument functions are Curried
Haskell functions have exactly one argument.
Functions with “multiple arguments” are actually
functions that return functions that return functions.

Such “currying” is named after Haskell Brooks Curry,
who is also known for the Curry-Howard
Correspondence (“programs are proofs”).

Prelude> say x y = x++" to "++y
Prelude> :t say
say :: [Char] -> [Char] -> [Char]
Prelude> say "Hello" "Stephen"
"Hello to Stephen"

Prelude> :t say "Hello"
say "Hello" :: [Char] -> [Char]

Prelude> hello s = say "Hello" s
Prelude> hello "Fred"
"Hello to Fred"
Prelude> :t hello
hello :: [Char] -> [Char]
Prelude> hello = say "Hello"
Prelude> hello "George"
"Hello to George"
Prelude> :t hello
hello :: [Char] -> [Char]

Top-level Type Declarations

It is good style in .hs files to include type declarations for top-level functions

Best documentation ever: a precise, compiler-verified function summary

−− addThree.hs
addThree :: Int -> Int -> Int -> Int
addThree x y z = x + y + z

Prelude> :l addThree
[1 of 1] Compiling Main (addThree.hs, interpreted)
Ok, one module loaded.

*Main> :t addThree
addThree :: Int -> Int -> Int -> Int

*Main> addThree 1 2 3
6

Polymorphism and Type Variables
Haskell has excellent support for polymorphic functions

Haskell supports parametric polymorphism, where a value may be
of any type

Haskell also supports ad hoc polymorphism, where a value may be
one of a set of types that support a particular group of operations

Parametric polymorphism: the head function

Prelude> :t head
head :: [a] -> a

Here, a is a type variable that ranges over every possible type.

Prelude> :t fst
fst :: (a, b) -> a

Here, a and b are distinct type variables, which may be equal or different

Ad Hoc Polymorphism and Type Classes

Haskell’s ad hoc polymorphism is provided by Type Classes, which specify a
group of operations that can be performed on a type (think Java Interfaces)

Prelude> :t (==)
(==) :: Eq a => a -> a -> Bool

“The (==) function takes two arguments of type a, which must be of the Eq
class, and returns a Bool”

Members of the Eq class can be compared for equality

A type may be in multiple classes; multiple types may implement a class

Common Typeclasses
Eq Equality: == and /=

Ord Ordered: Eq and >, >=, <, <=, max, min, and compare, which gives
an Ordering: LT, EQ, or GT

Enum Enumerable: succ, pred, fromEnum, toEnum (conversion to/from
Int), and list ranges

Bounded minBound, maxBound

Num Numeric: (+), (-), (*), negate, abs, signum, and fromInteger

Real Num, Ord, and toRational

Integral Real, Enum, and quot, rem, div, mod, toInteger, quotRem, divMod

Show Can be turned into a string: show, showList, and showsPrec (op-
erator precedence)

Read Opposite of Show: string can be turned into a value: read et al.

Ord, Enum, and Bounded Typeclasses
Prelude> :t (>)
(>) :: Ord a => a -> a -> Bool
Prelude> :t compare
compare :: Ord a => a -> a -> Ordering

Prelude> :t succ
succ :: Enum a => a -> a

Prelude> maxBound :: Int
9223372036854775807
Prelude> minBound :: Char
'\NUL'
Prelude> maxBound :: Char
'\1114111'
Prelude> minBound :: (Char, Char)
('\NUL','\NUL')

The Num Typeclass
Prelude> :t 42
42 :: Num p => p -- Numeric literals are polymorphic
Prelude> :t (+)
(+) :: Num a => a -> a -> a -- Arithmetic operators are, too

Prelude> :t 1 + 2
1 + 2 :: Num a => a
Prelude> :t (1 + 2) :: Int
(1 + 2) :: Int :: Int -- Forcing the result type
Prelude> :t (1 :: Int) + 2
(1 :: Int) + 2 :: Int -- Type of one argument forces the type

Prelude> :t (1 :: Int) + (2 :: Double)
<interactive>:1:15: error:

 * Couldn't match expected type 'Int' with actual type 'Double'
 * In the second argument of '(+)', namely '(2 :: Double)'
 In the expression: (1 :: Int) + (2 :: Double)

The Integral and Fractional Typeclasses
Prelude> :t div
div :: Integral a => a -> a -> a -- div is integer division
Prelude> :t toInteger
toInteger :: Integral a => a -> Integer -- E.g., Int to Integer
Prelude> :t fromIntegral
fromIntegral :: (Integral a, Num b) => a -> b -- Make more general
Prelude> 1 + 3.2
4.2 -- Fractional
Prelude> (1 :: Int) + 3.2

 * No instance for (Fractional Int) arising from the literal '3.2'
 * In the second argument of '(+)', namely '3.2'
 In the expression: (1 :: Int) + 3.2
 In an equation for 'it': it = (1 :: Int) + 3.2
Prelude> fromIntegral (1 :: Integer) + 3.2
4.2 -- Num + Fractional
Prelude> :t (/)
(/) :: Fractional a => a -> a -> a -- Non-integer division

The Show Typeclass
Show is helpful for debugging

Prelude> :t show
show :: Show a => a -> String
Prelude> show 3
"3"
Prelude> show 3.14159
"3.14159"
Prelude> show pi
"3.141592653589793"
Prelude> show True
"True"
Prelude> show (True, 3.14)
"(True,3.14)"
Prelude> show ["he","llo"]
"[\"he\",\"llo\"]"

The Read Typeclass
Simple parsing. You may need to tell it what type to look for
Prelude> :t read
read :: Read a => String -> a
Prelude> read "17" + 25
42 -- Deduced type from context
Prelude> read "4"

*** Exception: Prelude.read: no parse -- Not enough information
Prelude> read "4" :: Int
4
Prelude> read "4" :: Integer
4
Prelude> read "4" :: Float
4.0
Prelude> read "(True, 42)" :: (Bool, Int)
(True,42) -- Tuples can be read
Prelude> read "[\"hello\",\"world\"]" :: [String]
["hello","world"] -- Lists can be read

