
Project Report: The Discrete Logarithm Problem
Hana Mizuta (hm2694) and Michelle Mao (mm4957)

ALGORITHM
The discrete logarithm problem [baseexp = x (mod m)] is a well-known problem in number
theory: given base, x, and m, calculate exp. This problem is often used in cryptography — there
is no efficient (or polynomial) solution to this problem, and with a large enough m it would take
exponential time and a near-infinite amount of memory to try and crack the cipher.

We implemented the baby-step giant-step meet-in-the-middle algorithm to solve this problem.
Here’s an overview of the algorithm:

1. Calculate the ceiling of the square root of m; call this sqrtM
2. For each i from 1 to sqrtM-1, calculate basei mod m and store this value in a pair with i

(key basei mod m, value i); call this lhsTable
3. For each j from 1 to sqrtM, calculate [(x)(base-j * sqrtM mod m)] mod m; call this rhsSol and

compare this value with each key in lhsTable
a. If this value matches any key in lhsTable, return lhsTable[key] + (j * sqrtM); this

is the solution exp
4. If no values match for each pair i, j, there are no solutions to the problem with the given

values for base, x, and m.

**The value base-j * sqrtM mod m is known as the modular multiplicative inverse, and satisfies the
following property: [(base mod m)(base-1 mod m)] mod m = 1. The modular multiplicative
inverse is only defined when base and m are relatively prime.

CODE
DLog.hs
The function runBabyStepGiantStep takes in a String of input and parses the input into x, base,
and m, then passes these values into babyStepGiantStep. babyStepGiantStep starts the actual
algorithm: first it checks if base and m are relatively prime, and returns a Left string if they are
not. sqrtM is calculated, as well as lhsTable (using powMod, a function that returns be mod m
when given b, e, and m). In this implementation, lhsTable is a list of tuples (key, value).

runBabyStepGiantStep and babyStepGiantStep

From here, babyStepGiantStep kicks off Step 3 of the algorithm by calling babyStepGiantStep’.
Each time babyStepGiantStep’ is called, j (called numIter) counts up by 1. babyStepGiantStep’
uses the helper function inverseEuclid, which calculates the modular multiplicative inverse of an
input base and m. With each numIter, first lhsTable is scanned to see if rhsSol is in the list of
values; if it is, the solution ans is calculated and returned as a Right. The iterations stop when
numIter passes sqrtM, otherwise the search continues.

babyStepGiantStep’

runDLog.hs
Finally, runBabyStepGiantStep is called in runDLog.hs. We were primarily concerned with the
runtime of the algorithm on a large number of inputs, so the final output is the number of
problems that have solutions in the file rather than the list of solutions itself.

runDLog.hs

CONSIDERATIONS
The runtime of this problem grows exponentially as the number of digits in m increase. We
decided to test files with 7,500 lines of input with 4-digit ms, and 75 lines of input with 5-digit
ms, because both had sequential runtimes of ~10s.

Run sequentially, the 4-digit m file (small.txt) took 12.151s and the 5-digit m file (large.txt) took
12.789s.

PARALLELIZING
The obvious route was to parallelize how the algorithm was being called. `using` parList deepseq
had negligible effect on the elapsed times, so the values are omitted. (All times listed are the total
elapsed times.)

 1 CORE 2 CORE 4 CORE 8 CORE

`using` parList rpar

small.txt 11.954s 6.38s 3.56s 2.16s

spark number 15000 15000 15000 15000

sparks converted5000 15000 15000 15000 1

large.txt 12.877s 7.23s 5.02s 4.37s

spark number 150 150 150 150

sparks converted 150 150 150 150

`using` parList rseq

small.txt 12.075s 6.18s 3.44s 2.17s

spark number 7500 7500 7500 7500

sparks converted 7500 7500 7500 7500

large.txt 13.403s 7.18s 4.84s 4.30s

spark number 75 75 75 75

sparks converted 75 75 75 75

Parallelizing how the algorithm is called with two different strategies

As we can see, this caused significant speedups. Running the parallelized version on 1 core took
a bit longer than just running the sequential version, but didn’t increase the elapsed time
significantly. Running `using` parList rpar on small.txt gives a speedup of 12.151/6.38 = 1.90 on
2 cores, a speedup of 12.151/3.56 = 3.41 on 4 cores, and a speedup of 12.151/2.16 = 5.63 on 8.

 1 CORE 2 CORE 4 CORE 8 CORE

small.txt, rpar 1.02 1.90 3.41 5.63

large.txt, rpar 0.99 1.77 2.55 2.93

small.txt, rseq 1.01 1.97 3.53 5.60

large.txt, rseq 0.95 1.78 2.64 2.97

Speedups

The spark statistics look pretty good — a large number of sparks are being created in each case,
particularly in small.txt (with 7500 input lines), but 100% of them are being converted. It’s
interesting to note that the ParList rseq strategy results in half the number of sparks (one for each
line of input rather than two), but it doesn’t seem to have a significant effect. This is most likely
because rseq is performing the same evaluation as rpar, since each individual spark is its own
problem (and not a list of values to map over).

Here’s what Threadscope shows:

small.txt, parList rpar, 4 cores

large.txt, parList rpar, 4 cores

The images look pretty good, as well — when we look at the activity for small.txt on 4 cores
with parList rpar, the program seems to be utilizing the machine’s resources well when
dynamically partitioning the problem. For large.txt, there seems to be much more garbage
collection breaking up the activity for all cores. This stays consistent regardless of the number of
cores used (activity for 8 cores is below), which we expected: 4-digit moduli is handled well by
the baby-step giant-step algorithm, but adding an extra digit increases the runtime for each
individual problem significantly.

**Each problem has at minimum a runtime of O(sqrtM*sqrtM). For 4-digit m problems this can
be anywhere from ~1000-9999, and for 5-digit m problems this balloons to ~10000-99999.

Because rpar and rseq (as well as deepseq) seem to evaluate the problems in pretty much the
same manner, it doesn’t seem like there’s much else we can do to parallelize how the baby-step
giant-step algorithm is called.

The next thing to try is parallelizing the algorithm itself!

small.txt, parList rseq, 8 cores

large.txt, rseq, 8 cores

PARALLELIZING THE ALGORITHM
When we inspect the algorithm, the largest time-sink is the searching of the computed value
rhsSol (for sqrtM iterations) over our ‘map’ lhsTable, which is of size sqrtM-1. What seems to
make the most sense is sparking off each iteration of numIter (j in Step 3) so that the search can
be parallelized. In the parallel version, babyStepGiantStepPar’ mostly stays the same: the only
change is Left “no solution this iteration” is returned when there is no solution rather than Left
“no solution”.

babyStepGiantStepPar’

The list iterMap holds the list [1..numIter], and babyStepGiantStepPar’ is now mapped over
iterMap. To check if a solution was found, allRight is called on the resulting list of Eithers and
will contain the solution if a Right is present. If the result contains only Lefts, there was no
solution.

babyStepGiantStepPar

Here are the results of running parList rpar (and only the sequential map
(runBabyStepGiantStepPar) lines in runDLog.hs):

*Only rpar data is included because rseq performs nearly the same

 1 CORE 4 CORE

parList rpar

small.txt 13.658s 8.37s

spark number 657496

sparks converted 290823

large.txt 14.142s 5.19s

spark number 22641

sparks converted 20227

Parallelizing the algorithm (parList rpar)

The first thing to note is that running babyStepGiantStepPar sequentially already takes 1 to 2
more seconds than the normal sequential version, which makes sense because of the increased
overhead. While 0 sparks overflowed for both, there were 44x the number of sparks for small,
and 151x the number of sparks for large (!). For both small.txt and large.txt, many sparks were
GC’d or had fizzled, where there previously had been 0. However, the speedups as well as the
spark statistics show some interesting results: small.txt had a speedup of 12.151/8.37 = 1.45 and
large.txt had a speedup of 12.789/5.19 = 2.46, while 44.2% of small.txt’s sparks and 89% of
large.txt’s sparks converted.

Let’s take a look at the activity of each:

small.txt, parList rpar, 4 cores (algorithm)

large.txt, parList rpar, 4 cores (algorithm)

In contrast with the previous parallelization, there is more machine activity on the 5-digit moduli
file than on the 4-digit moduli file. This is what we expected — parallelizing the algorithm
should benefit large more, because the bulk of the runtime is spent on solving the problems. With
8 cores, for small.txt it’s 12.151/7.057 = 1.72 and for large.txt it’s 12.789/4.000 = 3.20.

While these speedups are much smaller than parallelizing the calling of the problem, they still
speed up the runtime of the program significantly (considering the speedups make up for the
increased overhead of parallelizing the algorithm). Parallelizing the algorithm also

speeds up 5-digit m problems more than 4-digit m problems, which is what we were aiming for.

**We also tried parBuffer with chunks of different sizes (100, 50, 20), but too many sparks were
still being created and there was less speedup.

The next thing to try is parallelizing not every single iteration in iterMap, but chunks. This
should reduce the spark pool to hopefully better numbers.

USING CHUNKS
This is accomplished in babyStepGiantStepParWithChunks: iterMap is now a list of lists of
Integers, and babyStepGiantStepParWithChunks’ maps babyStepGiantStepPar’ over the inside
lists of Integers. Finally, allRight combines the results using concat.

babyStepGiantStepParWithChunks and babyStepGiantStepParWithChunks’

Here are the results:

 1 CORE 4 CORE

parList rpar

small.txt 13.668s 14.46s

spark number 9158

sparks converted 13 (9030 GC’d)

large.txt 12.134s 12.37

spark number 230

sparks converted 146 (78 GC’d)

Parallelizing the algorithm (chunk size 100)

small.txt, babyStepGiantStepWithChunks, chunk size 100, 4 cores

large.txt, babyStepGiantStepWithChunks, chunk size 100, 4 cores

This is really bad! The number of sparks significantly decreased, but the number of converted
sparks decreased even more. It seems that the additional overhead of breaking iterMap and later
calling concat to put it back together likely resulted in the decreased speedup (compared to
babyStepGiantStepPar).

Chunking iterMap didn’t work at all, so all that’s left is attempting to combine the two earlier
strategies (parallelizing both how the algorithm is called and the algorithm itself with
babyStepGiantStepPar).

MULTIPLE LAYERS OF PARALLELISM

Here are the results with parList rpar in both runDLog.hs and babyStepGiantStepPar:

 1 CORE 2 CORE 4 CORE 8 CORE

double parList rpar

small.txt 14.810s 8.36s 5.06s 3.12s

spark number 715980 681896 680404

sparks converted5000 15430 119515 42337

large.txt 14.147s 8.31s 5.35s 4.74s

spark number 22953 22788 22788

sparks converted 312 368 566

double parList rpar

 1 CORE 2 CORE 4 CORE 8 CORE

small.txt 0.82 1.45 2.40 3.89

large.txt 0.90 1.54 2.39 2.70

Speedups with double parList rpar

small.txt, double parList rpar, 4 cores

large.txt, double parList rpar, 4 cores

The results look decent — large.txt seems to maintain a similar speedup when compared with
babyStepGiantStepPar (2.39 compared to 2.46), while small.txt is significantly sped up when
compared to babyStepGiantStepPar (2.40 compared to 1.45). The activity is significantly higher
for small.txt, which is good to see (because adding the rpar to the calling of
runBabyStepGiantStep should speed up small.txt more).

CONCLUSION
We attempted to parallelize using different combinations of how the algorithm was being called
(runBabyStepGiantStep) and the algorithm itself (babyStepGiantStep). First, we changed how
runBabyStepGiantStep was called, and `using` parList rpar seemed to give the best results. Next,
we tried parallelizing the algorithm in two ways: babyStepGiantStepPar, which created sparks
for each iteration in iterMap, and babyStepGiantStepParWithChunks, which created sparks for
chunks of iterations in iterMap. babyStepGiantStepParWithChunks failed miserably, so finally
we combined changing how the algorithm was being called and using babyStepGiantStepPar.

With 4-digit moduli, changing only how runBabyStepGiantStep ran resulted in the best speedups
(5.63 on 8 cores for 4-digit ms!). The speedup for 5-digits was around the same for changing
how runBabyStepGiantStepPar ran, and using the parallel algorithm function
babyStepGiantStepPar (with a speedup of 2.96 on 8 cores). 8 cores always had the largest
speedup for our input files. Finally, the choice of which particular strategy or combination of
strategies to use depends on how many digits are in the moduli of the input file.

Addendum: Regex

ALGORITHM
Initially, we wanted to parallelize regex matching. Oftentimes users may want to search through
multiple files for a given word. Sometimes, however, users may want to match against a more
general regex rather than just a simple given word. We wanted to find a way to regex match
against multiple files in an efficient manner.

CODE
For regex matching, we first created 1000 files with 10000 words in each files (each file was on
a new line) using Python. We then

1. Read through all of the 1000 files with readFile and saved the contents into a 1000
element list of Strings

2. Mapped matchRegex over the above list
3. Wrote the words that matched the regex into new files

We then tried to spark off step 2 using parMap. However, we found that there was a bottleneck
with the IO. Step 1 took so long that Step 2 essentially became sequential.

To minimize the IO actions, we edited steps 1 and 3 to create the following steps:

1. Created a new file of 100 lines that had 10k words per line and saved the contents into a
100 element list of Strings.

2. Mapped matchRegex over the above list
3. Calculated the total number of regex word matches we found and printed to stdout

Again, we tried to spark off step 2 using parMap. However, we found that there was still a
bottleneck with the IO, and Step 2 was still being executed sequentially.

We also tried to chunk (similar to how we did in the DLog with both chunksOf and with
parChunks) the input, but that did not help.

README
=======================

DLOG

=======================

To run single threaded on macOS

$ ghc -O2 runDLog.hs -rtsopts -eventlog

$./runDLog input/small.txt +RTS -ls

$./threadscope.osx runDLog.eventlog

To run with 4 cores on macOS

$ ghc -O2 runDLog.hs -rtsopts -eventlog -threaded

$./runDLog input/small.txt +RTS -N4 -ls

$./threadscope.osx runDLog.eventlog

=======================

REGEX MATCHING

=======================

$ cd regex

To run single threaded on macOS

$ ghc -O2 runRegex.hs -rtsopts -eventlog

$./runRegex regex_in.txt at +RTS -s

To run with 4 cores on macOS

$ ghc -O2 runRegex.hs -rtsopts -eventlog -threaded

$./runRegex regex_in.txt at +RTS -N4 -s

runDLog.hs

import Control.Parallel.Strategies

import Data.Either

import DLog

import System.Environment(getArgs)

main :: IO ()

main = do

 [f] <- getArgs

 file <- readFile f

 let line = lines file

 sol = map (runBabyStepGiantStep) line

 -- sol = map (runBabyStepGiantStepPar) line `using` parList rseq -- TODO

 -- sol = map (runBabyStepGiantStepParWithChunks) line `using` parList rseq -- TODO

 putStrLn $ show $ length $ filter isRight sol

DLog.hs

module DLog (runBabyStepGiantStep,

 runBabyStepGiantStepPar,

 runBabyStepGiantStepParWithChunks) where

import qualified Data.Bits as Bits (shift)

import Data.Either

import Data.List.Split

import Control.Parallel.Strategies

-- if parallel

runBabyStepGiantStepPar :: String -> Either String Integer

runBabyStepGiantStepPar line =

 let [x, base, modulus] = map read $ words line

 in babyStepGiantStepPar base x modulus

babyStepGiantStepPar :: Integer -> Integer -> Integer -> Either String Integer

babyStepGiantStepPar base x m

 | isRelativelyPrime base m == False = Left "Base and modulus must be relatively prime"

 | length allRight > 0 = head allRight

 | otherwise = Left "No solution"

 where sqrtM = ceiling $ sqrt $ fromIntegral m

 lhsTable = [(powMod base i m, i) | i <- [1 .. (sqrtM - 1)]]

 iterMap = [1 .. sqrtM]

 allSols = map (babyStepGiantStepPar' base x m sqrtM lhsTable) iterMap `using` parList

rpar

 allRight = filter isRight allSols

babyStepGiantStepPar' :: Integer -> Integer -> Integer -> Integer -> [(Integer, Integer)] -> Integer -> Either String

Integer

babyStepGiantStepPar' base x m sqrtM lhsTable numIter

 | elem rhsSol (map fst lhsTable) = Right ans

 | otherwise = Left "No match this iteration"

 where rhsSol = x * (inverseEuclid (base ^ (currRhsIdx)) m) `mod` m

 ans = currLhsIdx + currRhsIdx

 currLhsIdx = getI rhsSol lhsTable

 currRhsIdx = sqrtM * numIter

-- if par with chunks

runBabyStepGiantStepParWithChunks :: String -> Either String Integer

runBabyStepGiantStepParWithChunks line =

 let [x, base, modulus] = map read $ words line

 in babyStepGiantStepParWithChunks base x modulus

babyStepGiantStepParWithChunks :: Integer -> Integer -> Integer -> Either String Integer

babyStepGiantStepParWithChunks base x m

 | isRelativelyPrime base m == False = Left "Base and modulus must be relatively prime"

 | length allRight > 0 = head allRight

 | otherwise = Left "No solution"

 where sqrtM = ceiling $ sqrt $ fromIntegral m

 lhsTable = [(powMod base i m, i) | i <- [1 .. (sqrtM - 1)]]

 iterMap = chunksOf 50 [1 .. sqrtM]

 allSols = map (babyStepGiantStepParWithChunks' base x m sqrtM lhsTable) iterMap `using`

parList rpar

 allRight = filter isRight $ concat allSols

babyStepGiantStepParWithChunks' :: Integer -> Integer -> Integer -> Integer -> [(Integer, Integer)] -> [Integer] ->

[Either String Integer]

babyStepGiantStepParWithChunks' base x m sqrtM lhsTable iterMap =

 map (babyStepGiantStepPar' base x m sqrtM lhsTable) iterMap

-- if single

runBabyStepGiantStep :: String -> Either String Integer

runBabyStepGiantStep line =

 let [x, base, modulus] = map read $ words line

 in babyStepGiantStep base x modulus

babyStepGiantStep :: Integer -> Integer -> Integer -> Either String Integer

babyStepGiantStep base x m

 | isRelativelyPrime base m == False = Left "Base and modulus must be relatively prime"

 | otherwise = babyStepGiantStep' base x m sqrtM 1 lhsTable

 where sqrtM = ceiling $ sqrt $ fromIntegral m

 lhsTable = [(powMod base i m, i) | i <- [1 .. (sqrtM - 1)]]

babyStepGiantStep' :: Integer -> Integer -> Integer -> Integer -> Integer -> [(Integer, Integer)] -> Either String

Integer

babyStepGiantStep' base x m sqrtM numIter lhsTable

 | elem rhsSol (map fst lhsTable) = Right ans

 | numIter > sqrtM = Left "No solution"

 | otherwise = babyStepGiantStep' base x m sqrtM (numIter + 1) lhsTable

 where rhsSol = x * (inverseEuclid (base ^ (currRhsIdx)) m) `mod` m

 ans = currLhsIdx + currRhsIdx

 currLhsIdx = getI rhsSol lhsTable

 currRhsIdx = sqrtM * numIter

-- HELPER FUNCTIONS --

powMod :: Integer -> Integer -> Integer -> Integer

powMod b e m = powMod' b e m 1

powMod' :: Integer -> Integer -> Integer -> Integer -> Integer

powMod' _ 0 _ result = result

powMod' b e m result = powMod' bNew eNew m resultNew

 where resultNew = if (odd e) then (result * b) `mod` m else result

 eNew = Bits.shift e (-1)

 bNew = (b * b) `mod` m

inverseEuclid :: Integer -> Integer -> Integer

inverseEuclid x m = inverseEuclid' m x m 0 1 100

inverseEuclid' :: Integer -> Integer -> Integer -> Integer -> Integer -> Integer -> Integer

inverseEuclid' m x mUpdated a b c

 | c == 0 = a `mod` m

 | otherwise = inverseEuclid' m newX x b y newX

 where newX = mUpdated `mod` x

 y = a - (mUpdated `div` x) * b

isRelativelyPrime :: Integer -> Integer -> Bool

isRelativelyPrime num1 num2

 | num2 == 0 = (num1 == 1)

 | otherwise = isRelativelyPrime num2 (num1 `mod` num2)

getI :: Integer -> [(Integer, Integer)] -> Integer

getI word (hd:tl)

 | ((fst hd) == word) = snd hd

 | otherwise = getI word tl

getI word [] = error "programming error!"

-- HELPER FUNCTIONS --

runRegex.hs
{-

param1 : input file to match regex on

param2 : regex to match words agaainst

return : list of number of matches per line

$ ghc -O2 runRegex.hs -rtsopts -eventlog

$./runRegex sample_in.txt at

[1, 1]

sample_in.txt:

phosphatize Kristian pre-expound Kourou Asshur conquistadores Mayview Turkey-carpeted

Blessington xanthochroia cue Lamb basso-relievo diarize esthesioblast Natica

Regex that we support:

abc* matches a string that has ab followed by zero or more c

a(bc)* matches a string that has a followed by zero or more copies of the sequence bc

roar matches any string that has the text roar in it

a(b|c) matches a string that has a followed by b or c, multiple ors not supported

\d matches a single character that is a digit

. matches any character

-}

import Control.Parallel.Strategies

import System.Environment(getArgs)

import Regex

main :: IO ()

main = do

 [f, regex] <- getArgs

 file <- readFile f

 let line = map words $ lines file

 sol = map (runRegex regex) line

 putStrLn $ show $ map length sol

Regex.hs
module Regex (runRegex) where

import Data.Char(isDigit, isAlphaNum)

import Data.List(isInfixOf, isPrefixOf)

runRegex :: String -> [String] -> [String]

runRegex regex contents =

 let res = map (matchRegex regex) contents

 in map (\(b, word) -> word) (filter (\(b, word) -> b) (zip res contents))

-- MATCH REGEX

-- basics

matchRegex :: String -> String -> Bool

matchRegex ('.':tlReg) (_:tlStr) = matchRegex tlReg tlStr

-- or

matchRegex ('(':a:'|':b:')':tl) (hdStr:tlStr)

 | hdStr == a || hdStr == b = matchRegex tl tlStr

 | otherwise = False

matchRegex ('(':_:'|':_:')':_) [] = False

-- kleene star

matchRegex regex@(a:'*':tl) (hdStr:tlStr)

 | a /= hdStr && tlStr == [] = False

 | a /= hdStr = matchRegex tl tlStr

 | a == hdStr = matchRegex tl tlStr || matchRegex regex tlStr

-- parenthesized kleene star

matchRegex regex@('(':_:_) str = recurringKleene (regex) str []

-- escape characters

matchRegex ('\\':'d':tl) (hdStr:tlStr)

 | isDigit hdStr = matchRegex tl tlStr

 | otherwise = False

-- alphanum

matchRegex regex@(hdReg:tlReg) str@(hdStr:tlStr)

 | isAlphaNum' regex = isInfixOf regex str

 | isAlphaNum hdReg && isAlphaNum hdStr && hdReg == hdStr

 = matchRegex tlReg tlStr

 | otherwise = False

matchRegex [] [] = True

matchRegex [] _ = False

matchRegex _ [] = False

-- MATCH REGEX

-- HELPER FUNCTIONS

isAlphaNum' :: String -> Bool

isAlphaNum' (hd:tl)

 | isAlphaNum hd = isAlphaNum' tl

 | otherwise = False

isAlphaNum' [] = True

removeKleene :: String -> String -> String

removeKleene kleene str = reverse (take ((length str) - (length $ tail kleene)) (reverse str))

recurringKleene :: String -> String -> String -> Bool

recurringKleene (')':'*':tl) str kleene

 | isPrefixOf (tail kleene) str

 = (matchRegex (kleene ++ ")*" ++ tl) (removeKleene kleene str) || matchRegex tl str)

 | otherwise = matchRegex tl str

recurringKleene (hd:tl) str kleene

 = recurringKleene tl str (kleene ++ [hd])

recurringKleene [] _ _ = error "TODO how would this get called?"

-- HELPER FUNCTIONS

