Parallel Functional Programming Project:
Parallel Ray Tracer

Garrison Grogan, UNI gg2652
December 17 2019

1 Introduction

I chose to write a very simple parallel ray tracer in Haskell. A ray tracer is a
computer graphics program which, given a description of a scene, produces a
photo realistic image through a ray tracing algorithm. The ray tracing algorithm
in short shoots many rays from light sources in the scene, and calculates inter-
sections between those rays and objects in the scene. Depending on the light
source types implemented and material types implemented, this can produce
a wide range of effects like reflections, refractions, global illumination, diffuse
shading, etc.

I started with a reference description of a non paralleled ray tracer. I updated
the code to follow more modern Haskell conventions, compile without warning
on new versions of GHC, and made some changes changes to the parser, as well
as the way rays were calculated. The full code can be found in the code listing
section. It was compiled and tested using GHC 8.6.5. See the README in the
included source code for full instructions on compiling and running the program.
Use the included example scenes to see how to make new scene files.

The original code for calculating the rays was:

{— returns a color array representing the image —}

getImage :: Int —> Resolution —> Scene —> [Color]
getImage d r@(rx,ry) s = [image (fromIntegral x, fromIntegral (—y))
| y<= [—(ry—1)..0], x <— [0..(rx—1)]]
where
image = rayTrace d r s

This is really the only paralellizable part of the code, since rays are inde-
pendent of each other, and a single ray only has a few calculations done on
it before it is complete. The non parallel version of the code actually worked
nicely sequentially on my computer. On the example files I made they completed
sequentially with the times (calculated from getCPUTime) in table 1. The se-
quential program does not scale at all though, and a bottle neck is reached when
generating high resolution images. To see the example images used in testing,
see figures 5-9 or generate them by running the program.

Example Time (s)

1 5.9

2 3.2 Table 1: Sequential Runtime
3 5.9 '

4 12.2

5 8.4

When compiled with threading and event logging, the examples take signif-
icantly longer to generate. Example 4 now takes 19 to 20 seconds according to
threadscope. This and all following runtime numbers come from looking at the
total time variable in the event log using threadscope.

2 How to Parallelize?

From the above code, it seemed natural to want to split up the rays amongst
cpu cores. The implementation already generates a list of ray drawing calls that
return colors, so I first chose to use the evalList strategy talked about in class. 1
rewrote the list comphrension and it along with a parMap and rdeepseq call. I
chose parMap since I already had an image function being applied to the list. I
chose rdeepseq since the rays should be evaluated immediately. The only thing
that happens to them after this generation step is being written to a file.

the results were pretty bad. See table 2 for the results on example 4, the
most complex example image.

Example4 Time (s) | Core Count

19.04 1
18.12 2 Table 2: Example 4 parList Runtime
16.55 3
17.54 4

There was virtually no improvement. See Figure 1 for threadscope output
on 4 cores. Clearly the cores are not being managed properly, only core 2 is
being saturated. There is a bit of parallelization at the beginning of the run
but it quickly stops. 1.9 million sparks were needlessly made and wasted on
core 2. What went wrong is that the parallelization was too fine grained. Not
every single ray needs to be executed in parallel. The computation cost of a
ray is similar to that of a spark. Instead I should have been grouping the rays
together in bundles.

I rewrote the the code to instead use parBuffer and rdeepseq. I split the
the list of rays into 512 ray sized chunks, and evaluated each chunk in parallel
instead of each ray. See the following code snippet:

{— returns a color array representing the image —}

getImage :: Int —> Resolution —> Scene —> [Color]

getImage d r@Q(rx,ry) s = concat $ withStrategy (parBuffer n rdeepseq)
(map imagec $ chunks [(fromIntegral x, fromlIntegral (—y)) |
y<— [—(ry—1)..0], x <= [0..(rx—=1)]])

where
imagec x= map (rayTrace d r s) x
n = numCapabilities
chunks x = chunksOf 512 x

This worked significantly better and I got a nice speed up. The single
threaded case even gained a speed boost and was comparable to the non logging
sequential code. See table 3 for the speed increases on example 4.

Example4 Time (s) Core Count
12.76 1

7.39

5.4

4.5

4.26

4.01

4.09

4.15

3.92

3.85 10

3.75 11

4.09 12

Table 3: Example 4 parBuffer Runtime

© 00~ Uk W

There was diminishing return beyond 6 cores, which happens to be the physical
core count on the computer I tested the program on. The computer does have 12
threads, and there was improvement of a quarter second until I fully saturated
every thread and there was a speed loss. I am not sure why there was a brief
slow down on 7 and 8 threads. It may have to do with the physical core count
or just random tasks that were on those threads at runtime.

All tests had high efficiency according to threadscope, never dropping under
77 percent. Maximum efficiency was on 2 cores, at 91.3 percent, and slowly
dropped. This is expected since the gains of adding cores will be marginal as
more time is spent on communication between cores and reporting back when
generating the final list. There were 0 overflowed sparks on any of the runs, and
all cores maintained very similar spark counts. See figure 2,3,4 for threadscope
results on 2,6 and 11 cores. Garbage collection became more of an issue above
10 cores but there was very little throughout the runs.

Activity

Wl
oWl
AR N1 R A
Wl

HECO

HEC1

L L L L L
- —

Figure 2: Threadscope - 2 Core Usage: Example 4, parBuffer 4+ rdeepseq

Activity

e 1NN AT TR) AT TN
e 0 T T R T, D RPN IED |
e IR R S BN) NV
e 1 D T TR AT Y (NN |
e T T N AT TN

s | T A T 0 RO T NI

Figure 3: Threadscope - 6 Core Usage: Example 4, parBuffer + rdeepseq

0s 0.5s 1s 1.5s 2s 2.5s 3s 3.5s

e | TR, 0 T BT ENR T T W OUAVIRET}

Activity

e 0 1 T TR MR
e 11 0T T N A T R RN AR
e O N AN DE MER R A CH
e 0T T T T EVEE 00 R NV
ees V)T Y LI

M A MR
e {00 U 1T R T T
e 0T A A0
e 01 AT A
e 1 O T 0 0

e 10 T VRN NV D Y D | YN

Figure 4: Threadscope - 11 Core Usage: Example 4, parBuffer + rdeepseq

3 Conclusion

Overall, there was pretty good 3x speed increase by efficiently parallizing the
raytracer, though there were diminishing returns going beyond four cores, which
became even more extreme after exceeding the testing computer’s physical core
count. There could still be some improvements though. The chunks are not
selective as to what rays are difficult to calculate, and which are not. Difficult
rays are likely next to each other, so some chunks are significantly harder to
compute than others. There may be some load balancing solution which would
remedy this. Furthermore the chunk size used in testing may actually be too
small relative to spark creation cost still, it could be experimented with more.
These improvements would need to be made as more features are added to the
ray tracer like general polygon support, and more lighting and texture effects.
The file format also needs to be improved. I used the ppm format since it was
simple but the images should be generated in a more common format.

4 Example Images

Figure 5: Example 1 Image

Figure 6: Example 2 Image

Figure 7: Example 3 Image

Figure 8: Example 4 Image

5 Code Listing

I have not included the generated parser code, since it over 800 lines long. I
have included the yacc file.

import TraceOutput (getTime, createlmage, getlmage)
import RenParse (RendDesc(RendDesc), readScene)
import System.Environment (getArgs)

import System.CPUTime (getCPUTime)

import System. Directory (doesFileExist)

main :: IO()
main = do
args <— getArgs
if (length args /= 2) then
error (”Usage: _Trace_<scene._path>_<image_path._(ppm)>\n”)
else
do
let input = head args
let output = head (tail args)
exists <— doesFileExist input
if (exists)
then
do content <— readFile input
let (RendDesc res depth scene) = readScene content
before <— getCPUTime
createlmage res (getImage depth res scene) output
after <— getCPUTime
putStr $ "Render._Time:.” ++ (getTime before after) ++ 7\n”
else error $§ "File:.\"” 4+ input ++ ”_does.not.exist.\n”

module TraceOutput (getTime, createlmage, getlmage) where
import Tracer (Resolution, Color, Scene, rayTrace)
import System.IO (writeFile)
import Control.Parallel.Strategies (withStrategy , parBuffer, rdeepseq)
import GHC.Conc (numCapabilities)
import Data.List.Split (chunksOf)

getTime :: Integer —> Integer —> String
getTime before after = show $§ after — before

{— returns a color array representing the image —}

getImage :: Int —> Resolution —> Scene —> [Color|]
getImage d r@(rx,ry) s = concat $ withStrategy (parBuffer n rdeepseq) (map ima
where

imagec x= map (rayTrace d r s) x

n = numCapabilities
chunks x = chunksOf 512 x

{— makes a ppm file , easiest to make without librairies —}
createlmage :: Resolution —> [Color] —> String — IO()
createImage (w,h) colors name = do
writeFile name str
where
str = ("P3\n”++) . shows w . (’ ’:) . shows h . (”\n255\n”++) . string
stringify = flip $ foldr showC

c = 255
showC (r,g,b) = shows (round (rxc)::Integer)
(’ ’:) . shows (round (gxc)::Integer)
(” ’:) . shows (round (bxc)::Integer) . (> ':)

[language=Haskell]

module RayMath where
type Point2D = (Int, Int)
type Point3D = (Double, Double, Double)
type Vector = (Double, Double, Double)
type Resolution = (Int, Int)

type Dimension = (Int, Int) {—Screen window res if use GUI —}

data Ray = Ray Point3D Vector
data RenderObj = Sphere Double Point3D
| Plane (Double,Double,Double,Double)

{— Didn’t use folds, slower applying the fn -}
(<+>) :: (Double, Double, Double) — (Double, Double, Double) —> (Double, Doul
(x1,y1,21) <> (x2,y2,22) = (x14x2, yl4+y2, z14+z2)
(<=>) :: (Double, Double, Double) —> (Double, Double, Double) —>
(Double, Double, Double)
(x1,y1,21) <> (x2,y2,22) = (x1—x2, yl—-y2, z1-22)
(<**>) :: (Double, Double, Double) —> (Double, Double, Double) — (Double, Dot
(x1,y1,21) <sx> (x2,y2,22) = (x1%x2,ylxy2,21%22)

(xx>) :: (Double, Double, Double) —> Double —> (Double,Double,Double){—only us
(x,y,2) #x> { = (xxf,yxf, zxf)

dot :: Vector —> Vector —> Double {— dot product —}
dot (x1,yl,z1) (x2,y2,22) = x1xx2 + ylxy2 4+ z1%z2

len :: Vector —> Double

10

len v = sqrt (v ‘dot‘ v)

norm :: Vector —> Vector
norm v
| len v < 10%%(—9) = (0.0,0.0,0.0) {— pesky floating point percision —}
| otherwise = v **> (1/(len v))
point2Vec :: Point3D —> Point3D —> Vector {— make a normalised vector from two
point2Vec v w = norm (w <—> v)

dist :: Point3D —> Point3D —> Double
dist p0 pl = sqrt ((pl <—> p0) ‘dot‘ (pl <—> p0))

{—clipping the color to be in [0,1] -}

clipUp :: Double —> (Double, Double, Double) —> (Double, Double, Double)
clipUp f (x,y,z) = (max x f, max y f, max z f)

clipDown :: Double — (Double, Double, Double) —> (Double, Double, Double)
clipDown f (x,y,z) = (min x f, min y f, min z f)

colorClip :: (Double, Double, Double) —> (Double, Double, Double)
colorClip = (clipUp 0.0) . (clipDown 1.0)

instRay :: Point3D —> Point3D —> Ray
instRay pl p2 = Ray pl (point2Vec pl p2)

solveQuad :: (Double,Double,Double) —> [Double] {—used for ray intersection —}
solveQuad (a,b,c)

| d<0 = []

| d>0 = [(=b — sqrt d)/(2*xa),(—btsqrt d)/(2xa)]

| otherwise = [—b/(2xa)]

where

d = bxb — 4xaxc

rayIntersectWith :: Ray —> RenderObj —> [Double]
{— solving for (x—cenX)"2 4+ (y—cenY) "2 + (z — CenZ)"2 = rad"2 —}
rayIntersectWith (Ray start dir) (Sphere rad cent) = solveQuad (dir ‘dot‘ dir,
where d = start <—> cent
rayIntersectWith (Ray start dir) (Plane (a,b,c,d))
| abs((a,b,c) ‘dot‘ dir) < 10%x(—9) = []

| otherwise = [— (d+((a,b,c) ‘dot‘ start)) / ((a,b,c) ‘dot‘ dir)]
normal :: Point3D —> RenderObj —> Vector
normal p (Sphere rad cent) = norm ((p <—> cent) *x> (1/rad))
normal _ (Plane (a,b,c,_)) = norm (a,b,c)
{— reflected direction given normalized direction and normal vectors —}
reflectDir :: Vector —> Vector —> Vector

reflectDir i n =1 <> (n *> (2%(n ‘dot‘ 1)))

11

{— refracted direction given normalized direction and normal vectors —}
refractDir :: Vector —> Vector —> Double —> Vector
refractDir i n r

| v< 0= (0.0,0.0,0.0)

| otherwise = norm § (i #x> rc) <+> (n *x> (rcx(abs c¢) — sqrt v))

where
c =mn ‘dot‘ (i **x> (—1))
re
¢c<0 = r — if cosine < 0, inside sphere

otherwise = 1/r
1+(rc*rc) % (cxc —1)

%

{— convert a pixel to a ray vector from camera eye —}

resToWin :: Resolution —> Dimension —> Point2D —> Point3D
resToWin (rx,ry) (w,h) (px,py) = (x/rxD, y/ryD, 0.0)
where
(rxD, ryD) = (fromIntegral rx, fromIntegral ry)
(pxD, pyD) = (fromIntegral px, fromIntegral py)
(wD, hD) = (fromIntegral w, fromIntegral h)
(x, y) = ((pxD—rxD/2)*wD, (pyD-ryD/2)xhD)

module Tracer (Resolution, Color, Diffuse(Solid), Texture(Texture), TexturedObj,
where

import Maybes

import RayMath

type Color = (Double, Double, Double)

data Diffuse = Solid Color

{— specularity reflectiveCoef specCoef refractivelndex—}
data Texture = Texture Diffuse Double Int Double Double

type TexturedObj = (RenderObj, Texture)
type Intensity = (Double, Double, Double)

data Light = PointL Point3D Intensity
| AmbientL Intensity

{— fized at 0,0,0, the point3d is the point camera looks at, dim is view windo
data Camera = Camera Point3D Dimension

data Scene = Scene Camera Color [TexturedObj| [Light]

data Intersection = Intersection Double Ray TexturedObj

12

type Image = Point2D —> Color

intersectDist :: (Maybe Intersection) —> Double

intersectDist Nothing = 0.0

intersectDist (Just (Intersection d - _)) =d

intersectText :: (Maybe Intersection) —> Texture

intersectText Nothing = Texture (Solid (0.0,0.0,0.0)) 0.0 0 0.0 0.0
intersectText (Just (Intersection _ _ (_,t))) =t

intersectPnt :: (Maybe Intersection) —> Point3D

intersectPnt Nothing = (0.0,0.0,0.0)
intersectPnt (Just (Intersection d (Ray start dir) _)) = start <> (dir =x> d

normalAt :: (Maybe Intersection) —> Vector

normalAt Nothing = (0.0,0.0,0.0)

normalAt i@(Just (Intersection - _ (o, -))) = normal (intersectPnt i) o
colorAt :: (Maybe Intersection) —> Color

colorAt Nothing = (0.0,0.0,0.0)

colorAt (Just (Intersection _ _ (_,Texture (Solid color) - _ _ _)))= color

{— closest intersection of a ray and an object, with distance > given —}
closeInter :: Ray —> (Maybe Intersection) —> TexturedObj —> (Maybe Intersectio:
closeInter r i (o,m)
| d > 10x%(—6) && ((isNothing i) || d < (intersectDist i)) = Just (Intersect
e

| otherwise = i

where
d = firstPos (rayIntersectWith r o)
firstPos [] = 0.0

firstPos (x:xs)
| x > 10*%*x(—6) = x
| otherwise = firstPos xs

intersectList :: Ray —> [TexturedObj] —> (Maybe Intersection)
intersectList r o = foldl (closelnter r) Nothing o

{— diffuse color at intersection —}

diff :: (Maybe Intersection) —> Light —> Color

diff _ (AmbientL _) = (0.0,0.0,0.0)

diff i (PointL pos int) = (int *x> ((point2Vec (intersectPnt i) pos) ‘dot‘ (mno

{— specular color at intersection —}

spec :: (Maybe Intersection) —> Vector —> Light —> Color
spec - _ (AmbientL _) = (0.0,0.0,0.0)

13

spec i d (PointL p int) = int *x> (rCoef * (((normalAt i) ‘dot‘ h)xx(fromInte
where
h = norm ((d **> (—1)) <+> (point2Vec (intersectPnt i) p))

(Texture _ rCoef sCoef _ _) = intersectText i
shadePnt :: Intersection —> Vector —> [TexturedObj] —> Light —> Color
shadePnt _ _ _ (AmbientL int) = int —direction doesn’t matter

shadePnt i d o l@(PointL pos _)
| shadow = (0.0,0.0,0.0)
| otherwise = (diff (Just i) 1) <+> (spec (Just i) d 1)
where
shadow = not (isNothing iShad) && (intersectDist iShad) <= dist (intersect]
iShad = intersectList (instRay (intersectPnt (Just 1)) pos) o

reflectPnt :: Int —> Intersection —> Vector —> [TexturedObj] —> [Light] — Col
reflectPnt dep i d = colorPnt dep (Ray (intersectPnt (Just i)) (reflectDir d (

refractPnt :: Int —> Intersection —> Vector —> Color —> [TexturedObj] —> [Ligh
refractPnt dep i d b
rDir = (0.0,0.0,0.0) = (\- - —> (0.0,0.0,0.0))

| otherwise = colorPnt dep (Ray (intersectPnt (Just i)) rDir) (b x> rCoef)
where
rDir = refractDir d (normalAt (Just i)) rInd

(Texture - _ _ rCoef rInd) = intersectText (Just i)
{—= color in a point wusing all the color info —}
colorPnt :: Int — Ray —> Color —> [TexturedObj] —> [Light] —> Color
colorPnt (-1) - - - _ = (0.0,0.0,0.0)

colorPnt d r@(Ray _ dir) b objs 1
| isNothing i = b
| otherwise = colorClip $ shadeCol <+> refCol <4+> refrCol
where
shadeCol = foldl (<+>) (0.0,0.0,0.0) (map (shadePnt (fromJust i) dir objs)
refCol
| refCoef = 0.0 = (0.0,0.0,0.0)
| otherwise = (reflectPnt (d—1) (fromJust i) dir objs 1)xx>refCoef
refrCol
| refrCoef = 0.0 = (0.0,0.0,0.0)
| otherwise = (refractPnt (d—1) (fromJust i) dir b objs 1)sxx>refrCoef

i = intersectList r objs
(Texture _ refCoef _ refrCoef _) = intersectText i
rayTracePnt :: Int —> Scene —> Point3D —> Color

rayTracePnt d (Scene (Camera lens _) a b ¢) p = colorPnt d (Ray p (point2Vec 1

{=finally trace the scene, return list of colors repping the image—}

14

rayTrace

rayTrace d r s@Q(Scene (Camera _ dim) _ _ _)

{

Int — Resolution —> Scene —> Image

(rayTracePnt d s)

module RenParse (RendDesc(RendDesc), readScene) where

import

import

Light (AmbientL, PointL), Camera(Camera))
import RayMath (Dimension, Resolution, RenderObj(Sphere,Plane))

Data.Char (isSpace, isAlpha,

—scene which should be rendered

data RendDesc = RendDesc Resolution Int Scene

readScene ::

String —> RendDesc

readScene= parseScene.lexer

}

Y%name parseScene

%tokentype { Token }

%token
int
double
camera
background
diffuse
solid
texture
sphere
plane
obj
objs
pointL
ambientL
lights
scene
resolution
rendDesc
7{’
7}7
’(7
)

) ’

D Y S S N Y Y o e S e

TokenInt $$ }
TokenDouble $$ }
TokenCamera }
TokenBackground }
TokenDiffuse }
TokenSolid }
TokenTexture }
TokenSphere }
TokenPlane }

TokenTexturedObj }

TokenObjs }
TokenPointL }
TokenAmbientL }
TokenLights }
TokenScene }
TokenResolution }
TokenRendDesc }
TokenOpenAcc }
TokenCloseAcc }
TokenOpenBrack }
TokenCloseBrack }

15

isDigit)

(resToWin r

Tracer (Scene(Scene), Texture(Texture), Diffuse(Solid), TexturedObj,

1’ { TokenOpenHook }
17 { TokenCloseHook }
7 { TokenComma }

Vo

RendDesc : rendDesc Resolution int ’[’ Scene ']’
{ RendDesc $2 $3 $5}

Resolution : ’(’ resolution ’(’ int ’,’ int ’)’)’
{ (84,86) }
Scene : scene '{’ Camera '}’ ’{’ Background '}’

’{’ objs Objs '}’ ’{’ lights Lights '}’
{ Scene $3 $6 $10 $14 }

Camera : camera '(’ double ’,’ double ’,’ double ’)’
7() int) ,) int ’))

{ Camera ($3,%$5,%7) (%10,%12) }

Background : background ’(’ double ’,’ double ’,’ double)’
{ ($3,$5,87) }
Obj : sphere double ’(’ double ’,’ double ’,’ double ’)’
{ Sphere $2 ($4,%6,$8) }
| plane ’(’ double ’,’ double ’,’” double ’,’ double)’

{ Plane ($3,%$5,$7,%89) }

Diffuse : solid ’(’ double ’,’ double ’,’ double ’)’
{ Solid (%$3,%5,87) }

Texture : (7 texture ’(’ diffuse Diffuse ’)’ double int double double’)’
{ Texture $5 $7 $8 $9 $10 }

TexturedObj : (7 obj (7 Obj ’)’ Texture ')’

{ (84,86) }
Objs : {— empty —}
{1}

| Objs TexturedObj
{ $2 : $1 }
Light : (7 pointL ’(’ double ’,’ double ’,’ double)’

(7 double ’,’ double ’,’ double)’)’

{ PointL ($4,%$6,$8) ($11,%13,$15) }

| ’(’ ambientL ’(’ double ’,’” double ’,’ double)’ 7)’

16

{ AmbientL ($4,%$6,38) }

Lights

{ [
{ $2

{

happyError

}

$

: {— empty —}

| Lights
1}

[Token

happyError _ = error

data Token
= TokenInt Int

lexer
lexer
lexer

|
(
}
|

TokenDouble
TokenCamera

Light

] > a
”Parse error !

Double

TokenBackground

TokenDiffus
TokenSolid
TokenTextur
TokenSphere
TokenPlane

e

e

TokenObjType

TokenTextur
TokenObjs
TokenPointL

edObj

TokenAmbientL

TokenLight
TokenLights
TokenScene

TokenResolution
TokenRendDesc
TokenOpenAcc
TokenCloseAcc
TokenOpenBrack
TokenCloseBrack
TokenOpenHook

TokenCloseH
TokenComma

String —> |
=[]
1cs)
isSpace ¢ =
isAlpha ¢ =
isDigit ¢ =

ook

Token]

lexer cs
lexVar (c:cs)
lexNum (c:ecs) 1

17

lexer (’{’:cs) = TokenOpenAcc : lexer cs
lexer (’}’:cs) = TokenCloseAcc : lexer cs
lexer (’(’:cs) = TokenOpenBrack : lexer cs
lexer (’)’:cs) = TokenCloseBrack : lexer cs
lexer (’[’:cs) = TokenOpenHook : lexer cs
lexer (’]’:cs) = TokenCloseHook : lexer cs
lexer (’,’:cs) = TokenComma : lexer cs
lexer (’—’:cs) = lexNum c¢s (—1)

lexXNum c¢s mul

| (r = ’.7) = TokenDouble (mul * (read (num++[r]++num2) :: Double))
| otherwise = TokenInt (round (mul * (read num))) : lexer (r:rest)
where (num,(r:rest)) = span isDigit cs

(num2,rest2) = span isDigit rest

lexVar cs =
case span isAlpha cs of

(7 camera” ,rest) —> TokenCamera : lexer rest

(” background” ;rest) —> TokenBackground : lexer rest
(” diffuse” rest) —> TokenDiffuse : lexer rest
(”solid” ,rest) —> TokenSolid : lexer rest

(” texture” ,rest) —> TokenTexture : lexer rest

(7 sphere” ,rest) —> TokenSphere : lexer rest

(” plane” ;rest) —> TokenPlane : lexer rest
(”obj” ,rest) —> TokenTexturedObj : lexer rest
(”objs” ,rest) —> TokenObjs : lexer rest

(” pointL” ,rest) —> TokenPointL : lexer rest

(7 ambientL” ,rest) —> TokenAmbientL : lexer rest
(7 light” ,rest) —> TokenLight : lexer rest
(”lights” ,rest) —> TokenLights : lexer rest

(7 scene” ,rest) —> TokenScene : lexer rest
("resolution” ,rest) —> TokenResolution : lexer rest
("rendDesc” ,rest) —> TokenRendDesc : lexer rest

18

