
PFP Project Report

Samurdha Jayasinghe (sj2564)

Ge Wang (gw2372)

December 2019

1 Introduction

The core of the geofencing problem is searching through a set of boundaries

to find which subset contains a query point. Inspired by how Uber deals

with the geofencing problem, we aim to solve geospatial problems parallelly

in Haskell by building an R-tree structure.

2 Implementation

Data Parsing and Preprocessing

We used two open-source datasets, one containing polygons outlining bound-

aries for all countries in the world, and another containing polygons outlining

4000+ states over the world. In order to handle JSON format data, we used

the Aeson library which is the most widely used library for parsing JSON.

We wrote the following modules for data parsing and preprocessing.

GeoJSONParser.hs

All the polygon data we downloaded is in the GeoJSON geospatial data

interchange standard. It has ‘type’ and ‘features’ fields on the outermost

1

layer of JSON data and for each feature, it has ‘type’, ‘properties’, and

‘geometry’ fields. So we created a data type ‘GeoJSONFeatureCollection’

and ‘GeoJSONFeature’ along with corresponding FromJSON instances. We

opted to derive generic FromJSON instances with a customized field label

modifier.

{-# LANGUAGE OverloadedStrings #-}

{-# LANGUAGE DeriveGeneric #-}

module GeoJSONParser (

parseFeatureCollection,

GeoJSONFeatureCollection (..),

GeoJSONFeature (..)

) where

import qualified Data.ByteString.Lazy as B

import GHC.Generics

import Data.Aeson

import Data.Char (toLower)

import qualified Data.Map.Strict as Map

import Geometry (Geometry)

parseFeatureCollection :: B.ByteString -> Maybe GeoJSONFeatureCollection

parseFeatureCollection = decode

data GeoJSONFeatureCollection =

GeoJSONFeatureCollection { fcType :: String

, fcFeatures :: [GeoJSONFeature]

} deriving (Show, Generic)

instance FromJSON GeoJSONFeatureCollection where

parseJSON = genericParseJSON defaultOptions {

fieldLabelModifier = defaultFieldLabelModifier }

2

data GeoJSONFeature =

GeoJSONFeature { ftType :: String

, ftProperties :: Map.Map String Value

, ftGeometry :: Geometry

} deriving (Show, Generic)

instance FromJSON GeoJSONFeature where

parseJSON = genericParseJSON defaultOptions {

fieldLabelModifier = defaultFieldLabelModifier }

defaultFieldLabelModifier :: String -> String

defaultFieldLabelModifier = map toLower . drop 2

Geometry.hs

Geometry data consists of ‘type’ and ‘coordinates’ attributes. It could be

‘Polygon’ or ‘MultiPolygon’ type and its ‘coordinates’ attribute describes

one or more polygons as a list of linear rings. The first element in the list

represents the exterior ring and any subsequent elements represent interior

rings (or holes). Each linear ring is composed of a list of points on the

map. In order to correctly parse geometry data and eliminate any possibil-

ity of malformed input, we wrote the datatype ‘GeoError’ and ‘Geometry’.

In ‘GeoError’, we defined several potential formatting issues for geometry

data, including ‘ClockwiseOuterRing’ or ‘LineStringNotClosed’, etc. Then

we defined a custom FromJSON instances for ‘Geometry’ instead of deriving

a generic instance because the mapping is not straightforward. For point

queries, we used the winding number algorithm to check whether a polygon

or multipolygon contains a point.

{-# LANGUAGE OverloadedStrings #-}

{-# LANGUAGE DeriveGeneric #-}

3

{-# LANGUAGE NamedFieldPuns #-}

module Geometry (

Geometry (..),

LinearRing (..),

GeoError,

containsP,

fromLineString,

Point

) where

import Data.Aeson

import BoundingBox (BoundingBox(..)

, Boundable

, getBoundingBox

, enlarge

)

import GHC.Generics (Generic)

import Control.DeepSeq

data GeoError =

ClockwiseOuterRing { badRing :: LinearRing }

| CounterClockwiseInnerRing

| LineStringTooShort

| LineStringNotClosed

| UnknownGeometryType

instance Show GeoError where

show ClockwiseOuterRing { badRing } =

"Polygon has invalid clockwise outer ring: " ++ show badRing

show CounterClockwiseInnerRing =

"Polygon has invalid counterclockwise inner ring(s)."

show LineStringTooShort = "LineString too short."

4

show LineStringNotClosed = "LineString not closed."

show UnknownGeometryType = "Unknown geometry type."

data Geometry =

Polygon { pOuterRing :: LinearRing

, pInnerRings :: [LinearRing] }

| MultiPolygon { mPolygons :: [Geometry] }

deriving (Show, Eq, Generic)

instance NFData Geometry

instance Boundable Geometry where

getBoundingBox Polygon { pOuterRing } = getBoundingBox pOuterRing

getBoundingBox MultiPolygon { mPolygons } = foldl1 enlarge $

map getBoundingBox mPolygons

instance FromJSON Geometry where

parseJSON = withObject "Geometry" $ \obj -> do

_type <- obj .: "type"

case _type of

String "Polygon" ->

do linearRings <- obj .: "coordinates"

return $ unwrap $ fromLinearRings linearRings

String "MultiPolygon" ->

do linearRingsList <- obj .: "coordinates"

let polygons = fromLinearRings <$> linearRingsList

return $ MultiPolygon { mPolygons = fmap unwrap polygons }

_ -> error $ show UnknownGeometryType

unwrap :: Show a => Either a b -> b

unwrap (Left e) = error $ show e

unwrap (Right p) = p

5

{- A linear ring MUST follow the right-hand rule with respect to the

area it bounds, i.e., exterior rings are counterclockwise, and

holes are clockwise.

-}

fromLinearRings :: [LinearRing] -> Either GeoError Geometry

fromLinearRings rings

| isClockwise outerRing = Left $ ClockwiseOuterRing { badRing = outerRing }

| anyCounterClockwise innerRings = Left CounterClockwiseInnerRing

| otherwise = Right $ Polygon { pOuterRing = outerRing

, pInnerRings = innerRings }

where outerRing = head rings

innerRings = tail rings

anyCounterClockwise = any (not . isClockwise)

isClockwise :: LinearRing -> Bool

isClockwise = (> 0) . sum . map transformEdge . makeEdges . getLineString

where transformEdge ((x1, y1), (x2, y2)) = (x2 - x1) * (y2 + y1)

makeEdges = zip <$> id <*> tail

-- Check whether a polygon contains a point using winding number algo

windNum :: LinearRing -> Point -> Bool

windNum rs (x, y) = (/= zero) . sum $ map checkOneEdge edges

where zero = 0 :: Int

edges = makeEdges $ getLineString rs

makeEdges ls = zip ls (tail ls)

isLeft (x1, y1) (x2, y2)

| y1 < y2 = crossProduct > 0

| y1 > y2 = crossProduct < 0

| otherwise = False

where crossProduct = ((x2 - x1) * (y - y1))

- ((x - x1) * (y2 - y1))

checkOneEdge (p1@(_, y1), p2@(_, y2))

| y1 <= y && y2 > y && isLeft p1 p2 = 1

6

| y1 > y && y2 <= y && isLeft p1 p2 = -1

| otherwise = 0

containsP :: Point -> Geometry -> Bool

containsP p (Polygon {pOuterRing}) = windNum pOuterRing p

containsP p (MultiPolygon {mPolygons}) = any (containsP p) mPolygons

newtype LinearRing = LinearRing { getLineString :: LineString

} deriving (Show, Eq, Generic)

instance NFData LinearRing

instance Boundable LinearRing where

getBoundingBox LinearRing { getLineString }

| minX > maxX || minY > maxY = error "Invalid BoundingBox"

| otherwise = BoundingBox minX minY maxX maxY

where minX = minimum $ xs

maxX = maximum $ xs

minY = minimum $ ys

maxY = maximum $ ys

xs = map fst getLineString

ys = map snd getLineString

instance FromJSON LinearRing where

parseJSON jsn = do

ls <- parseJSON jsn

return $ unwrap $ fromLineString ls

-- A linear ring is a closed LineString with four or more positions.

fromLineString :: LineString -> Either GeoError LinearRing

fromLineString ls

| length ls < 4 = Left LineStringTooShort

| not $ isClosedLineString ls = Left LineStringNotClosed

7

| otherwise = Right $ LinearRing ls

isClosedLineString :: LineString -> Bool

isClosedLineString ls

| [] <- ls = True

| [_] <- ls = True

| [x, y] <- ls, x /= y = False

| [x, y] <- ls, x == y = True

| x:_:rest <- ls = isClosedLineString (x:rest)

type LineString = [Point]

type Point = (Double, Double)

Entities.hs

Since our data contains both countries and states information and we plan

to build an R-tree using all of those geometry data, we decided to give the

parsed data a common type, ‘Entity’. Each Entity data could be either a

country or a state along with its name, admin and geometry data. After

parsing GeoFeature data from the original JSON file, ‘parseCountries’ and

‘parseStates’ would extract geometry and particular attributes from ‘GeoJ-

SONFeatureCollection’ data to generate a list of Entities.

{-# LANGUAGE NamedFieldPuns #-}

{-# LANGUAGE OverloadedStrings #-}

{-# LANGUAGE ScopedTypeVariables #-}

{-# LANGUAGE DeriveGeneric #-}

module Entities (

Entity,

parseStates,

parseCountries,

8

containsPoint,

buildEntityWithGeo

) where

import Geometry

import GeoJSONParser (GeoJSONFeatureCollection(..)

, GeoJSONFeature(..)

)

import qualified Data.Map.Strict as Map

import Data.Aeson.Types (Value, Value (String))

import qualified Data.Text as T

import BoundingBox (area, Boundable, getBoundingBox)

import GHC.Generics (Generic)

import Control.DeepSeq

data Entity =

Country { cGeometry :: Geometry

, cName :: String

, cAdmin :: String }

| State { sGeometry :: Geometry

, sName :: Maybe String

, sAdmin :: String } deriving (Eq, Generic)

instance NFData Entity

instance Ord Entity where

e1 `compare` e2 = a1 `compare` a2

where a1 = area $ getBoundingBox e1

a2 = area $ getBoundingBox e2

instance Show Entity where

show Country { cName } = "Country{ " ++ show cName ++ " }"

show State { sName } = "State{ " ++ show sName ++ " }"

9

instance Boundable Entity where

getBoundingBox Country { cGeometry } = getBoundingBox cGeometry

getBoundingBox State { sGeometry } = getBoundingBox sGeometry

parseCountries :: GeoJSONFeatureCollection -> Maybe [Entity]

parseCountries = mapM featureToCountry . fcFeatures

featureToCountry :: GeoJSONFeature -> Maybe Entity

featureToCountry GeoJSONFeature { ftProperties, ftGeometry } = do

name <- extractText <$> Map.lookup "NAME" ftProperties

admin <- extractText <$> Map.lookup "ADMIN" ftProperties

return $ Country { cGeometry = ftGeometry

, cName = name

, cAdmin = admin

}

parseStates :: GeoJSONFeatureCollection -> Maybe [Entity]

parseStates = mapM featureToState . fcFeatures

featureToState :: GeoJSONFeature -> Maybe Entity

featureToState GeoJSONFeature { ftProperties, ftGeometry } = do

name <- extractMaybeText <$> Map.lookup "name" ftProperties

admin <- extractText <$> Map.lookup "admin" ftProperties

return $ State { sGeometry = ftGeometry

, sName = name

, sAdmin = admin

}

extractText :: Value -> String

extractText (String t) = T.unpack t

extractText _ = error "not text"

10

extractMaybeText :: Value -> Maybe String

extractMaybeText (String t) = Just $ T.unpack t

extractMaybeText _ = Nothing

containsPoint :: Entity -> (Double, Double) -> Bool

containsPoint (Country {cGeometry}) p = containsP p cGeometry

containsPoint (State {sGeometry}) p = containsP p sGeometry

buildEntityWithGeo :: Geometry -> Entity

buildEntityWithGeo geo = State { sGeometry = geo

, sName = Nothing

, sAdmin = "NA" }

R-tree Implementation

Instead of using Uber’s two-level hierarchy model, we implement an R-tree

data structure to index polygons based on containment, the node at the

root of a subtree spatially contains nodes below it. To build the R-tree, we

use a bounding box for each polygon which is defined by the minimum and

maximum coordinates to generate sequences of input entities. Searching the

R-tree for which polygon’s bounding boxes contain a point improves time

complexity from O(n) to O(logMn) where M is the user-defined constant

of the maximum children a node can have. Followings are the modules we

created for implementing the R-tree structure.

BoundingBox.hs

BoundingBox is composed of 2 (long, lat) coordinates, representing the bot-

tom left and top right corners of the rectangle. And we used BoundingBox

to generate ordered sequences of Entities we parsed from datasets to build

R-tree. We should be able to get a bounding box for any geometry element

based on the minimum and maximum coordinates of constituent coordinates.

Therefore, we defined a type class ‘Boundable’ which has just the function

11

‘getBoundingBox’ which returns a bounding box for that element. Then we

implemented ‘Boundable’ instances for both Geometry and Entity data type

by calculating the maximum and minimum longitude and latitude coordi-

nates among the list of points. We also added some other helper functions

between bounding boxes. ‘Enlarge’ function returns the smallest bounding

box that contains 2 bounding boxes supplied as input. ‘Area’ computes the

area of a bounding box, ‘containsPoint’ checks whether a given point falls

within a bounding box.

{-# LANGUAGE DeriveGeneric #-}

module BoundingBox where

import Data.List (intersperse)

import GHC.Generics (Generic)

import Control.DeepSeq

data BoundingBox = BoundingBox { x1 :: !Double

, y1 :: !Double

, x2 :: !Double

, y2 :: !Double } deriving (Eq, Generic)

instance NFData BoundingBox

instance Ord BoundingBox where

bb1 `compare` bb2 = area bb1 `compare` area bb2

class Boundable a where

getBoundingBox :: a -> BoundingBox

type Point = (Double, Double)

12

-- Get the smallest bounding box that contains the two input bounding boxes

enlarge :: BoundingBox -> BoundingBox -> BoundingBox

enlarge b1 b2 = BoundingBox (min x1' x1'') (min y1' y1'')

(max x2' x2'') (max y2' y2'')

where BoundingBox x1' y1' x2' y2' = b1

BoundingBox x1'' y1'' x2'' y2'' = b2

-- Compute the area of a bounding box

area :: BoundingBox -> Double

area (BoundingBox x1' y1' x2' y2') = (x2' - x1') * (y2' - y1')

-- Check whether a bounding box contains a point

containsPoint :: BoundingBox -> Point -> Bool

containsPoint bb (px, py) = px > x1' && px < x2' && py > y1' && py < y2'

where BoundingBox x1' y1' x2' y2' = bb

instance Show BoundingBox where

show (BoundingBox x1' y1' x2' y2') = "BB [" ++ points ++ "]"

where points = concat $ intersperse "," $ map show [x1', y1', x2', y2']

RTree.hs

Our implementation of R-tree data type includes ‘Empty’, ‘Node’ which con-

tains a bounding box and a list of children nodes, and ‘Leaf’ which contains

a bounding box and a specific entity. The key idea of the data structure

is to group nearby objects and represent them with their minimum bound-

ing rectangle in the next higher level of the tree. We implemented NFData,

Boundable and Show instances to RTree data type. Insertion and searching

are the two main functions we were working on. For insertion, we traversed

the tree from root to bottom. At each step, all bounding boxes in the current

layer are examined and we choose the node that requires least enlargement

to insert the new entry. Upon reaching the second last layer of the tree, we

13

directly append the new entry to the children list and then check whether

the length of children exceeds the maxChildren we set. If the node is full, we

split the node into 2 subnodes by regrouping its children. In order to find the

best split, we used an algorithm that Guttman proposed in his paper called

QuadraticSplit. The algorithm searches for the pair of rectangles that is the

worst combination to have in the same node, and makes them the initial

objects of the two new groups. It then searches for the child node which has

the strongest preference for one of the groups (in terms of area increase) and

assigns the object to this group until all objects are assigned. For searching,

we wrote a function called contains which accepts a Rtree and a point and

returns all leaf nodes that contain the point as a list. The ‘contains’ function

traverses the tree from top to bottom and at each level, it will recursively call

‘contains’ function at those children whose bounding box contains the point

till the bottom of the tree. The time complexity of searching is O(logMn). In

order to improve the performance of building tree, we added the function of

union two subtrees into one single tree. Its implementation is pretty similar

to the insertion.

{-# LANGUAGE DeriveGeneric #-}

module RTree where

import BoundingBox

import Data.List (sortBy, maximumBy)

import GHC.Generics (Generic)

import Control.DeepSeq

minChildren :: Int

minChildren = 2

14

maxChildren :: Int

maxChildren = 4

data RTree a =

Node BoundingBox [RTree a]

| Leaf BoundingBox a

| Empty

deriving (Eq, Generic)

instance NFData a => NFData (RTree a)

instance Boundable (RTree a) where

getBoundingBox (Node bb _) = bb

getBoundingBox (Leaf bb _) = bb

getBoundingBox Empty = error "getBoundingBox on Empty"

instance Show a => Show (RTree a) where

show Empty = "Empty"

show (Leaf _ e) = show e

show (Node _ children) = show children

newTree :: RTree a

newTree = Empty

getChildren :: RTree a -> [RTree a]

getChildren (Node _ children) = children

getChildren _ = []

getElem :: Boundable a => RTree a -> a

getElem Empty = error "getElem on Empty"

getElem (Leaf _ e) = e

getElem (Node _ _) = error "Node does not have elem"

15

singleton :: Boundable a => a -> RTree a

singleton a = Leaf (getBoundingBox a) a

-- Generate a node which has this list of nodes as its children

generateNode :: Boundable a => [RTree a] -> RTree a

generateNode [] = Empty

generateNode children = Node newBB children

where newBB = mergeBB' $ getBoundingBox <$> children

mergeBB' bbs = foldr1 enlarge bbs

insert :: Boundable a => RTree a -> a -> RTree a

insert Empty e = singleton e

insert n@(Leaf _ _) e = Node (mergeBB n e) [singleton e, n]

insert n@(Node _ _) e

| length (getChildren newN) > maxChildren = generateNode $ splitNode newN

| otherwise = newN

where newN = addToNode n $ singleton e

-- Merge two subtrees into one

union :: Boundable a => RTree a -> RTree a -> RTree a

union Empty right = right

union left Empty = left

union l@(Leaf bb1 _) r@(Leaf bb2 _)

| bb1 == bb2 = l -- if two leaves have the same bounding box, return left

| otherwise = generateNode [l,r]

union left right

| depth left > depth right = union right left

| depth left == depth right = foldr1 union $ (getChildren left) ++ [right]

| length (getChildren newN) > maxChildren = generateNode $ splitNode newN

| otherwise = newN

where newN = addToNode right left

-- Add new node to a tree

16

addToNode :: Boundable a => RTree a -> RTree a -> RTree a

addToNode old new = Node newBB newChildren

where newBB = unionBB old new

oldChildren = getChildren old

directAdd = new : filter (bbNotSame new) oldChildren

bbNotSame n c = getBoundingBox c /= getBoundingBox n

newChildren

| depth old == depth new + 1 = directAdd

| otherwise = insertIntoBestChild oldChildren new

fromList :: Boundable a => [a] -> RTree a

fromList xs = foldl insert newTree xs

toList :: RTree a -> [a]

toList Empty = []

toList (Leaf _ a) = [a]

toList (Node _ ts) = concatMap toList ts

-- Merge boundingbox of given node with element

mergeBB :: Boundable a => RTree a -> a -> BoundingBox

mergeBB Empty e = getBoundingBox e

mergeBB t e = enlarge (getBoundingBox t) (getBoundingBox e)

{- Insert a new node into the best child of a list of tree nodes by finding

the child that needs to expand its bounding box the least to accommodate

the new node.

-}

insertIntoBestChild :: Boundable a => [RTree a] -> RTree a -> [RTree a]

insertIntoBestChild [] _ = []

insertIntoBestChild children@(x:xs) new

| getBoundingBox x == getBoundingBox best = (inserted best) ++ xs

| otherwise = x : insertIntoBestChild xs new

where (best:_) = sortBy compare' children

17

compare' x' y = diffBB x' `compare` diffBB y

diffBB x' = area (unionBB x' new) - originalArea x'

originalArea = area . getBoundingBox

inserted node

| length (getChildren newNode) > maxChildren = splitNode newNode

| otherwise = [newNode]

where newNode = addToNode node new

-- Split a tree node into 2 nodes by regrouping its children into 2 groups

splitNode :: Boundable a => RTree a -> [RTree a]

splitNode Empty = error "cannot split empty node"

splitNode (Leaf _ _) = error "cannot split leaf node"

splitNode (Node _ children) = [generateNode group1, generateNode group2]

where (l,r) = worstPair children

toAdd = filter notLOrR children

notLOrR e = getBoundingBox e /= getBoundingBox l &&

getBoundingBox e /= getBoundingBox r

(group1, group2) = partition [l] [r] toAdd

-- Find the pair of child nodes which form the biggest enlarged boundingbox

worstPair :: Boundable a => [RTree a] -> (RTree a, RTree a)

worstPair children = result

where result = snd $ maximumBy (\m n -> compare (fst m) (fst n)) $

[(combinedArea, pair)

| x <- indexedC

, y <- indexedC

, let (c1, idx1) = x

(c2, idx2) = y

, idx1 /= idx2

, let bb1 = getBoundingBox c1

bb2 = getBoundingBox c2

combinedArea = area $ enlarge bb1 bb2

pair = (c1, c2)

18

]

indexedC = zip children ([1..] :: [Int])

-- Get the enlarged boundingbox containing two nodes

unionBB :: Boundable a => RTree a -> RTree a -> BoundingBox

unionBB n1 n2 = enlarge (getBoundingBox n1) (getBoundingBox n2)

-- Compute the area diff when merging a node with another

areaDiffWithNode :: Boundable a => RTree a -> RTree a -> Double

areaDiffWithNode newNode old = newArea - oldArea

where newArea = area $ unionBB newNode old

oldArea = area $ getBoundingBox old

-- Partition the third list of nodes into either the first

-- or the second group of nodes returning (group1, group2)

partition

:: Boundable a

=> [RTree a] -> [RTree a] -> [RTree a] -> ([RTree a], [RTree a])

partition l r [] = (l,r)

partition l r toAdd

| length toAdd + length l <= minChildren = (l ++ toAdd, r)

| length toAdd + length r <= minChildren = (l, r ++ toAdd)

| otherwise = assign nextNode l r

where nextNode = snd $ maximumBy (\m n -> compare (fst m) (fst n)) $

[(diff e, e) | e <- toAdd]

lNode = generateNode l

rNode = generateNode r

leftDiff e = areaDiffWithNode e lNode

rightDiff e = areaDiffWithNode e rNode

diff e = abs (leftDiff e - rightDiff e)

assignToLeft = partition (nextNode : l) r remain

assignToRight = partition l (nextNode : r) remain

remain = filter notNextNode toAdd

19

notNextNode n = getBoundingBox n /= getBoundingBox nextNode

assign nextN l' r'

| leftDiff nextN < rightDiff nextN = assignToLeft

| leftDiff nextN > rightDiff nextN = assignToRight

| areaL < areaR = assignToLeft

| areaL > areaR = assignToRight

| length l' < length r' = assignToLeft

| otherwise = assignToRight

where areaL = area $ getBoundingBox lNode

areaR = area $ getBoundingBox rNode

depth :: Boundable a => RTree a -> Int

depth Empty = 0

depth (Leaf _ _) = 1

depth (Node _ children) = 1 + (maximum $ map depth children)

-- Get all leaf nodes as a list that contain the point

contains :: Boundable a => RTree a -> Point -> [RTree a]

contains Empty _ = []

contains l@(Leaf bb _) p

| containsPoint bb p = [l]

| otherwise = []

contains (Node bb children) p

| containsPoint bb p = foldr (\x acc -> contains x p ++ acc) [] children

| otherwise = []

printTree :: (Boundable a, Show a) => String -> RTree a -> IO ()

printTree header Empty = putStrLn $ header ++ "Empty"

printTree header (Leaf bb x) = putStrLn $

header ++ "Leaf " ++ show bb ++ " " ++ show x

printTree header (Node bb children) =

do putStrLn $ header ++ "Node " ++ (show bb) ++ "{"

mapM_ (printTree $ header ++ space) children

20

putStr "}"

where space = replicate 9 ' '

Evaluation

Evaluate.hs

Contains helper functions for performing evaluations which allows different

sections of the program to be selectively run in parallel or sequential modes,

different numbers of randomly generated test points and different numbers

of randomly generated geofences.

module Evaluate where

import qualified Entities as E

import Geometry (Point)

import GeoJSONParser (parseFeatureCollection)

import qualified RTree as RT

import Control.Parallel.Strategies (using, parList, rdeepseq)

import qualified Generator as G

import qualified Data.ByteString.Lazy as B

import Control.DeepSeq

import Data.List.Split (chunksOf)

import BoundingBox (BoundingBox(..), Boundable(..))

import System.Directory

import Control.Concurrent.ParallelIO.Local

import Data.Maybe (fromJust)

data Execution = Parallel | Sequential deriving (Eq, Show)

type Path = String

countryJson :: Path

countryJson = "data/full/countries.json"

21

stateJson :: Path

stateJson = "data/full/states_provinces.json"

chunkedJsonPath :: Path

chunkedJsonPath = "data/separate/"

evaluate :: Execution -> Execution -> Execution -> Int -> Int -> IO ()

evaluate e1 e2 e3 numPoints additionalEntities = do

putStrLn ("Starting Evaluation with " ++ show numPoints

++ " points and " ++ show additionalEntities ++

" additional entities")

putStrLn "Generating test points using "

let points = generateTestPoints numPoints

putStrLn $ "Generated " ++ (show $ length points) ++ " points"

putStrLn ("Loading test entities using " ++ show e1 ++ " mode")

seedEntities <- loadTestEntities e1

putStrLn $ "Loaded " ++ (show $ length seedEntities) ++ " test entities"

putStrLn "Generating additional entities"

let generatedEntities = generateNewEntities e1 seedEntities additionalEntities

entities = seedEntities ++ generatedEntities

putStrLn $ (show $ length entities) ++ " total entities"

putStrLn ("Constructing RTree using " ++ show e2 ++ " mode")

let tree = makeTree e2 entities

putStrLn $ "Constructed RTree of depth " ++ (show $ RT.depth tree)

putStrLn $ "Query points using " ++ show e3 ++ " mode"

let results = case e3 of

Sequential -> op

Parallel -> op `using` parList rdeepseq

where op = map (enclosingFences tree) points

putStrLn "Length of results:"

print $ length results

enclosingFences :: RT.RTree E.Entity -> (Double, Double) -> [RT.RTree E.Entity]

22

enclosingFences tree p = filter (doesContain p) $ RT.contains tree p

where doesContain p' leaf = E.containsPoint (RT.getElem leaf) p'

evaluateList :: Execution -> [Point] -> IO ()

evaluateList e points = do

entities <- loadTestEntities e

let tree = makeTree e entities

result = case e of

Sequential -> op

Parallel -> op `using` parList rdeepseq

where op = map (enclosingFences tree) points

mapM_ print $ zip points result

loadTestEntities :: Execution -> IO [E.Entity]

loadTestEntities Sequential = do

countries <- loadCountries countryJson

states <- loadStates stateJson

return (countries ++ states)

loadTestEntities Parallel = do

filePaths <- listDirectory chunkedJsonPath

let paths = filter (\path -> path `notElem` [".DS_Store"]) filePaths

es <- withPool 4 $ \pool -> parallelInterleaved pool (map load paths)

return $ concat es

load :: String -> IO [E.Entity]

load path@('s': _) = loadStates $ chunkedJsonPath ++ path

load path@('c': _) = loadCountries $ chunkedJsonPath ++ path

load _ = error $ "unknown path"

loadStates :: String -> IO [E.Entity]

loadStates path = do

x <- B.readFile path

return $ fromJust $ E.parseStates $ fromJust $ parseFeatureCollection x

23

loadCountries :: String -> IO [E.Entity]

loadCountries path = do

x <- B.readFile path

return $ fromJust $ E.parseCountries $ fromJust $ parseFeatureCollection x

generateTestPoints :: Int -> [Point]

generateTestPoints n = G.genPoints world n

generateNewEntities :: Execution -> [E.Entity] -> Int -> [E.Entity]

generateNewEntities e bounds numEntities = genList ++ remList

where num = numEntities `quot` length bounds

r = numEntities `mod` length bounds

remList

| e == Sequential = concat $ map (generateEntity 1) (take r bounds)

| otherwise = concat (map (generateEntity 1) (take r bounds)

`using` parList rdeepseq)

genList

| e == Sequential = concat $ map (generateEntity num) bounds

| otherwise = concat (map (generateEntity num) bounds

`using` parList rdeepseq)

generateEntity :: Int -> E.Entity -> [E.Entity]

generateEntity n entity = E.buildEntityWithGeo <$> polygons

where polygons = G.genPolygons n $ getBoundingBox entity

makeTree :: (Boundable a, NFData a) => Execution -> [a] -> RT.RTree a

makeTree Sequential xs = RT.fromList xs

makeTree Parallel xs = let chunks = split numChunks xs in makeTreePar chunks

where numChunks = 10

makeTreePar :: (Boundable a, NFData a) => [[a]] -> RT.RTree a

makeTreePar entitiess = foldr1 RT.union (map RT.fromList entitiess

24

`using` parList rdeepseq)

split :: Int -> [a] -> [[a]]

split numChunks xs = chunksOf (length xs `quot` numChunks) xs

world :: BoundingBox

world = BoundingBox { x1 = longMin

, y1 = latMin

, x2 = longMax

, y2 = latMax

}

where latMin = -90

latMax = 90

longMin = -180

longMax = 180

Generator.hs

Contains helper functions for generating random geofence polygons. Poly-

gons are generated by first generating a set of random points within some

region specified by the provided bounding box, and then computing the con-

vex hull of these “seed” points.

{-# LANGUAGE NamedFieldPuns #-}

module Generator where

import qualified Geometry as GM

import qualified ConvexHull as CH

import BoundingBox (BoundingBox(..))

import System.Random

import Data.List.Split (chunksOf)

import qualified RTree as RT

25

genRandomNumbersBetween :: Int -> Int -> (Double, Double) -> [Double]

genRandomNumbersBetween n seed (a, b) = take n $ (randomRs (a, b) myGenerator) where

myGenerator = mkStdGen seed

getPair :: [a] -> (a, a)

getPair [x, y] = (x, y)

getPair _ = error "shouldn't happen"

genPoints :: BoundingBox -> Int -> [GM.Point]

genPoints bb n = zip xs ys

where xs = genRandomNumbersBetween n seedX (xMin, xMax)

ys = genRandomNumbersBetween n seedY (yMin, yMax)

BoundingBox {x1, y1, x2, y2} = bb

[xMin, yMin, xMax, yMax] = [x1, y1, x2, y2]

seedX = 100

seedY = 120

genPolygons :: Int -> BoundingBox -> [GM.Geometry]

genPolygons n (BoundingBox {x1,y1,x2,y2}) = map makePoly chunks

where chunks = chunksOf numPts $ zip xs ys

xs = genRandomNumbersBetween (numPts * n) seedX (x1, x2)

ys = genRandomNumbersBetween (numPts * n) seedY (y1, y2)

numPts = 20

seedX = 100

seedY = 120

genSampleTree :: RT.RTree GM.Geometry

genSampleTree = RT.fromList polygons

where polygons = concatMap (genPolygons 10) quadrants

quadrants = [BoundingBox { x1 = 0, x2 = 0.49, y1 = 0, y2 = 0.49 }

, BoundingBox { x1 = 0.5, x2 = 1, y1 = 0, y2 = 0.49 }

, BoundingBox { x1 = 0, x2 = 0.49, y1 = 0.5, y2 = 1 }

, BoundingBox { x1 = 0.5, x2 = 1, y1 = 0.5, y2 = 1 }

26

]

makePoly :: [(Double, Double)] -> GM.Geometry

makePoly pts = case lr of

Right x -> GM.Polygon { GM.pOuterRing = x, GM.pInnerRings = [] }

Left m -> error $ show m

where lr = GM.fromLineString $ ch ++ [head ch]

ch = map getPair $ CH.convexHull . map (\p -> [fst p, snd p]) $ pts

Testing

Main.hs

import Evaluate

import System.Environment

import System.Exit(die)

import System.IO(readFile)

import Geometry(Point)

import Data.List.Split (splitOn)

main :: IO ()

main = do

args <- getArgs

case args of

[filename, "s"] -> do

contents <- readFile filename

let points = getPoints $ lines contents

evaluateList Sequential points

[filename, "p"] -> do

contents <- readFile filename

let points = getPoints $ lines contents

evaluateList Parallel points

_ -> do

pn <- getProgName

die $ "Usage: " ++ pn ++

27

" <fileName> <execMode> \n" ++

"execMode: s --sequential, p --parallel"

getPoints :: [String] -> [Point]

getPoints lines' = map toPoint lines'

where toPoint l = helper $ splitOn "," l

helper [xs, ys] = (read xs :: Double, read ys :: Double)

helper _ = error $ "unknown formatting"

evaluatePerformance.hs

import Evaluate (Execution(..),evaluate)

import System.Environment

import System.Exit(die)

main :: IO()

main = do

args <- getArgs

case args of

[loadMode, buildTreeMode, queryMode, numPoint, numPolygon] -> do

let lm = getMode loadMode

tm = getMode buildTreeMode

qm = getMode queryMode

numPoint' = read numPoint :: Int

numPolygon' = read numPolygon :: Int

evaluate lm tm qm numPoint' numPolygon'

_ -> do

pn <- getProgName

die $ "Usage: " ++ pn ++ " <loadFileMode> <makeTreeMode> "

++ "<queryPointMode> <numPoint> <numPolygon>\n"

++ "XMode: s --sequential, p --parallel"

getMode :: String -> Execution

getMode "s" = Sequential

28

getMode "p" = Parallel

getMode _ = error "Invalid mode"

3 Performance

Main.hs

Test on testPoints.txt

Sequential run with 1 core

Total time: 8.35s

Parallel run with 4 cores

Sparks
total converted GC’d overflowed fizzled

21 16 0 0 5

Total time: 5.92s

Speedup: 1.4

evaluatePerformance.hs

Test on 10000 points and 10000 additional polygons.

LoadData, BuildTree, QueryPoint all Seq with 1 core

29

Total time: 19.08s

Parallel Loading Data, Rest Seq

Sparks
total converted GC’d overflowed fizzled

5164 5159 4 0 1

Total time: 16.80s

Speedup: 1.14

Parallel Building Tree, Rest Seq

Sparks
total converted GC’d overflowed fizzled

11 8 0 0 3

Total time: 8.61s

Speedup: 2.22

30

Parallel Querying Data, Rest Seq

Sparks
total converted GC’d overflowed fizzled

10000 39 8191 1770 0

Total time: 20.05s

Speedup: 0.95

All Parallel

Sparks
total converted GC’d overflowed fizzled

15175 5155 8193 1808 19

Total time: 6.27s

Speedup: 3.04

31

4 References

https://eng.uber.com/go-geofence/

https://medium.com/@buckhx/unwinding-uber-s-most-efficient-service-406413c5871d

https://hackage.haskell.org/package/aeson-1.4.6.0/docs/Data-Aeson.html

https://tools.ietf.org/html/rfc7946appendix-A.3

http://geomalgorithms.com/a03-inclusion.html

http : //hackage.haskell.org/package/data−r− tree−0.0.5.0/docs/Data−

RTree.html

http : //www − db.deis.unibo.it/courses/SI − LS/papers/Gut84.pdf

http : //rosettacode.org/wiki/ConvexhullHaskell

32

