
COMS 4995 W: Parallel Functional Programming
Parallel PageRank with MapReduce

Xi Yang, Zefeng Liu - xy2390, zl2715

December 16, 2019

1 Introduction

PageRank (PR) is an algorithm used by Google Search to rank web pages in their search

engine results.1 PageRank works by counting the number and quality of links to a page to

determine a rough estimate of how important the website is. The underlying assumption is

that more important websites are likely to receive more links from other websites.2

PageRank algorithm can be generalized to measure the importance of any type of recur-

sive documents. It can be viewed as a node weight metric for complex networks including

social networks, transportation networks, electricity networks, species networks, etc. The

computing of PageRank is, therefore, a fundamental yet nontrivial problem.

In this project, we propose a parallel PageRank calculation program based on the MapRe-

duce framework.

2 Problem Formulation

The PageRank algorithm simulates a random surfer traveling within a directed graph. Given

the initial weight configuration of nodes, the algorithm outputs the probability (weight)

distribution which represents the likelihood of a person randomly traveling through the

edges will arrive at any particular node.

Now we formulate the Map/Reduce version of the PageRank problem.

The mapper receives the pair of node and pagerank as key, and the list of adjacent nodes

as value. It maps those key-value pairs to either the pairs of node and pagerank increment

or the pairs of node and list of adjacent nodes. The intermediate pairs are aggregated by

key and fed to the reducers.

The reducer receives the pairs emitted by the mappers and aggregates the pagerank

increments and calculates the updated pagerank value.

1Wikipedia contributors. “PageRank.” Wikipedia, The Free Encyclopedia. Wikipedia, The Free Ency-
clopedia, 15 Nov. 2019. Web. 21 Nov. 2019.

2“Facts about Google and Competition”. Archived from the original on 4 November 2011. Retrieved 12
July 2014.

1

COMS 4995 W: Parallel Functional Programming Parallel PageRank w/ MapReduce

3 Implementation

3.1 Data Type Definitions

In this section, we would like to introduce some shared building blocks, the data types, upon

which both our sequential and parallel solutions are implemented.

3.1.1 Nodes

Here we used String to represent a general node in the concerned graph. Intuitively, Nodes

are a set of Node. An instance of Nodes might be {“a”, “b”, “c”}.

3.1.2 Edges

In our implementation, Edges are a map for which the key type is Node, while the value

type is a list of nodes, representing the nodes connected to the corresponding key node. An

instance of Edges might be {“a”: [“b”, “c”], “b”: [“c”]}.

3.1.3 Graph

The Graph data type represents a directed graph for whose nodes we would like to calculate

the page rank values. The fields of this data type are,

• nodes. A set of all the nodes in this graph.

• inEdges. A map from a node to a list of nodes from which it is linked.

• outEdges. A map from a node to a list of nodes to which it links.

And there are some utility functions for this data type,

• parseLine :: Graph -> String -> Graph. Formulate an inEdge and an outEdge from

the given String, add them to the given Graph, then return the newly constructed

Graph. Each line of the input file should conform to the format ‘fromNode toNode’.

• fromContent :: String -> Graph. Given a file content, apply parseLine to every line

of the file content to construct a Graph.

• fromFile :: String -> IO Graph. Given a file name, utilize fromContent to construct a

IO Graph.

3.1.4 PageRank

A PageRank data type is a map from a Node to its current PageRankValue, which is a double

in our case.

It also has some utility functions, such as the mapper and the reducer functions to

compute the page rank values for a given graph with MapReduce, and also a sequential

method to compute page rank. We will explain more about these utility functions in the

following sections.

2

COMS 4995 W: Parallel Functional Programming Parallel PageRank w/ MapReduce

3.2 Sequential Solution

The function type is defined as PageRank -> Graph -> Int -> Double -> PageRank. We

can interpret it as, “given initial PageRank, the corresponding graph, a number of iterations

to compute, and a damping factor, returns the resulting PageRank after those iterations of

computation in a sequential way”.

Our sequential solution to compute the PageRank values for the next iteration works in

this way,

1 for each node n in all the Nodes of the Graph do

2 pr n← 0

3 for each edge (m, n) of n’s inEdges do

4 num of out nodes m← the number of nodes to which m links

5 pr previous m← the previous page rank value of m

6 pr delta m← pr previous m / num of out nodes

7 pr n← pr n + pr delta m

8 end

9 update the new page rank value of node n in the new PageRank data

10 end

11 one iteration of computation is completed, return the updated PageRank data

3.3 Parallel Solution with customized MapReduce

The function type is also defined as PageRank -> Graph -> Int -> Double -> PageRank.

And the interpretation is also similar, despite that this time the page rank values for the

next iteration will be calculated in a parallel way.

The function type of the mapper is defined as mapper :: (PageRankValue, [Node]) ->

PageRank. For each Node in the Graph, the mapper takes its current PageRankValue and

the list of nodes in its outEdges, then produces a map for which the key is each of the

node in its outEdges, and the value is its contribution to that node, defined as its current

PageRankValue divided by the number of nodes in its outEdges.

The function type of the reducer is defined as reducer :: [PageRank] -> PageRank. The

reducer merges all the outputs that the mapper produces. The merging rule is a simple

addition for each same node.

With these definitions, our customized mapReduce function is implemented as,

1 mapReduce :: (a −> b) −> ([b] −> c) −> [a] −> c

2 mapReduce mapper reducer input = pseq mapResult reduceResult

3 where

4 mapResult = parMap rpar mapper input

5 reduceResult = runEval (rpar $ reducer mapResult)

Once the reducer completed its work in one iteration, we could simply update the page

rank value for each node as (base + d ∗ pr), where base = (1− d)/num of nodes in graph,

d is the damping factor, pr is the corresponding value the reducer produced.

3

COMS 4995 W: Parallel Functional Programming Parallel PageRank w/ MapReduce

3.4 Benchmark based on External MapReduce Library

We wanted to have an external benchmark with which to compare and evaluate our MapRe-

duce based parallel PageRank implementation.

A short web search yielded Haskell-MapReduce (https://github.com/jdstmporter/

Haskell-MapReduce, https://wiki.haskell.org/MapReduce_as_a_monad) to be a promis-

ing general-purposed MapReduce library. Therefore we implemented a benchmark based on

the mentioned library.

The library is implemented in a monadic fashion such that mappers and reducers can

be viewed as generalized transformers of type signature a -> ([(s,a)] -> [(s’,b)]). It

provides a wrapper function liftMR that converts the map / reduce function into a monadic

function.3

Given the aforementioned MapReduce library, we only need to implement conventional

mapper and reducer.

According to the specification of the library, mapper should take the form of [s] ->

[(s’, a)], where s is input data, s’ is output data and a is output key. We implemented

the mapper such that s = (fromNode, (pageRankValue, toNodes)) and s’ = (toNode,

pageRankIncrement). Each of the input data emits its pagerank increment contribution to

all of its toNodes.

The reducer is implemented in a similar fashion, it takes input of the form [(toNode,

pageRankIncrement)]. For a particular toNode, the pagerank increment contribution from

all fromNodes are aggregated together, producing the pagerank value.

The evaluations to be given later in this report showed that this external benchmark has

a vastly worse performance compared with our implementation.

4 Evaluation

4.1 Settings

We performed our experiments on a MacBook Pro (15-inch, 2018), of which the processor

is 2.2 GHz 6-core Intel Core i7, and the memory is 16 GB 2400 MHz DDR4.

4.2 Experiment Results

We performed our experiments by performing 10 iterations of page rank computation on two

datasets with different sizes.

The first dataset is a larger fraction of the Wikipedia Note Network4, which is 90Kb large

with 11515 edges. Table 1 shows the experiment results of our MapReduce implementation.

Table 2 shows the experiment results of our sequential implementation and the benchmark

implementation.

3https://github.com/jdstmporter/Haskell-MapReduce
4https://snap.stanford.edu/data/wiki-Vote.html

4

https://github.com/jdstmporter/Haskell-MapReduce
https://github.com/jdstmporter/Haskell-MapReduce
https://wiki.haskell.org/MapReduce_as_a_monad
https://github.com/jdstmporter/Haskell-MapReduce
https://snap.stanford.edu/data/wiki-Vote.html

COMS 4995 W: Parallel Functional Programming Parallel PageRank w/ MapReduce

Table 1: Experiment Result for a 90Kb Dataset (MapReduce)
N time(s) converted gc’d fizzled total
1 59.92 0 4412 33038 37450
2 37.68 23322 858 13270 37450
3 35.86 28519 535 8396 37450
4 35.8 30830 346 4757 37450
5 36.09 32348 346 4757 37450
6 34.13 33376 300 3774 37450
7 35.62 33595 295 3560 37450
8 38.03 34186 256 3008 37450
9 40.4 34642 243 2565 37450
10 44.66 34850 226 2374 37450
11 44.29 35192 212 2046 37450
12 48.84 35487 191 1772 37450

Table 2: Experiment Result for a 90Kb Dataset (Sequential & Benchmark)
N time(s)

seq 173.62
benchmark-1 1923.26
benchmark-6 906.79

The second dataset is a smaller fraction of the Wikipedia Note Network, which is 40Kb

large with 5508 edges. Table 3 shows the experiment results of our MapReduce imple-

mentation. Table 4 shows the experiment results of our sequential implementation and the

benchmark implementation.

Table 3: Experiment Result for a 40Kb Dataset (MapReduce)
N time(s) converted gc’d fizzled total
1 26.23 0 2371 24879 27250
2 21.96 15890 844 10516 27250
4 20.38 21898 407 4945 27250
6 19.71 23888 286 3076 27250
8 24.64 24641 238 2371 27250
10 26.32 25345 196 1709 27250
12 27.99 25883 141 1226 27250

4.3 Performance Analysis

From the results, we can conclude that our MapReduce implementation is much more efficient

both than the sequential version and than the benchmark implementation.

5

COMS 4995 W: Parallel Functional Programming Parallel PageRank w/ MapReduce

Table 4: Experiment Result for a 40Kb Dataset (Sequential & Benchmark)
N time(s)

seq 88.26
benchmark-1 804.94
benchmark-6 472.71

We can also observe that when N = 6, which is equal to the number of cores, the

performance of our implementation is the best. If N is set to be larger, even the convertion

rate is increased, the overhead for parallelism is also increased, hence the consumed time

becomes longer.

For furthur analysis, we scrutinized the event log for our MapReduce implementation

running with the 40Kb dataset using ThreadScope. From the figure, we can observe that the

bottleneck is the GC waiting time.

Figure 1: Eventlog for MapReduce experiment with 40Kb Dataset

A Code Listing

6

COMS 4995 W: Parallel Functional Programming Parallel PageRank w/ MapReduce

1 {−
2

3 The main application program
4

5 Command line arguments: infilePath, outfilePath, itrs , [mode]
6

7 infilePath : path of input file , which should be in the format of lines
8 consisting of ‘fromNode toNode‘
9 outfilePath : path of output file

10 itrs : number of iterations in the PageRank computation
11 mode: optional , mode of PageRank computation, one of {seq, mr def,
12 mr ext}, default to mr def
13 seq: non−parallel sequential computation
14 mr def: parallel implementation based on default MapReduce
15 mr ext: benchmark parallel implementation based on external opensourced MapReduce library
16

17 −}
18

19 module Main (main) where
20

21 import Control.Monad (when)
22 import System.IO (openFile, IOMode(WriteMode), hPutStrLn, hClose)
23 import System.Environment (getArgs, getProgName)
24 import System.Exit
25 import Data.Map as M (toList)
26

27 import ProcessData (processData)
28 import PageRank (computePageRankSeq, computePageRankMR)
29 import PageRankExt (computePageRankMRext)
30

31 main :: IO()
32 main = do
33 progName <− getProgName
34 args <− getArgs
35

36 when (length args /= 3 && length args /= 4) $
37 die $ ”Usage: ” ++ progName ++ ” <infilePath> <outfilePath> <itrs> [mode], where\
38 \ mode is one of {seq, mr def, mr ext}, default to mr def”
39

40 let infilePath : outfilePath : itrs : mode = args
41 computePageRank = case mode of
42 [] −> computePageRankMR
43 [”mr def”] −> computePageRankMR
44 [”seq”] −> computePageRankSeq
45 [”mr ext”] −> computePageRankMRext
46 −> error $ ”Usage: ” ++ progName ++ ” <infilePath> <outfilePath> <itrs> [mode], where\
47 \ mode is one of {seq, mr def, mr ext}, default to mr def”

7

COMS 4995 W: Parallel Functional Programming Parallel PageRank w/ MapReduce

48

49 (graph, pageRank) <− processData infilePath
50 let resPageRank = computePageRank pageRank graph (read itrs) 0.85
51 h <− openFile outfilePath WriteMode
52 mapM (hPutStrLn h) [n ++ ”: ” ++ show pr | (n, pr) <− M.toList resPageRank]
53 hClose h

Listing 1: app/Main.hs

1 {−
2

3 This module contains a utility function, which
4 1) reads in a graph from a input file
5 2) initializes a PageRank data from the given graph
6 3) returns the graph and the initial page rank
7

8 −}
9

10 module ProcessData
11 (processData) where
12

13 import Graph (Graph, fromFile)
14 import PageRank (PageRank, initFromGraph)
15

16 processData :: String −> IO (Graph, PageRank)
17 processData filename = do
18 graph <− fromFile filename
19 let pageRank = initFromGraph graph
20 return (graph, pageRank)

Listing 2: src/ProcessData.hs

1 {−
2

3 This module defines the Graph data type. The fields are,
4 1) nodes: set of all the nodes in this graph
5 2) inEdges: map from a node to a list of nodes from which it is linked
6 3) outEdges: map from a node to a list of nodes to which it links
7

8 This module also contains some utility functions for this data type.
9

10 −}
11

12 module Graph
13 (Graph(..)
14 , Node

8

COMS 4995 W: Parallel Functional Programming Parallel PageRank w/ MapReduce

15 , fromFile
16) where
17

18 import qualified Data.Map as M (Map, insertWith, empty, keysSet)
19 import qualified Data.Set as S (Set, union, fromList, empty, toList , difference)
20 import System.IO (readFile)
21

22 type Node = String
23 type Nodes = S.Set Node
24 type InEdges = M.Map Node [Node]
25 type OutEdges = M.Map Node [Node]
26

27 data Graph = Graph { nodes :: Nodes
28 , inEdges :: InEdges
29 , outEdges :: OutEdges } deriving Show
30

31 −− Initial state of an empty graph
32 empty :: Graph
33 empty = Graph S.empty M.empty M.empty
34

35 −− Read in a graph from a file
36 fromFile :: String −> IO Graph
37 fromFile filename = do
38 content <− readFile filename
39 return $ fromContent content
40

41 fromContent :: String −> Graph
42 fromContent content =
43 let ls = lines content
44 in postProcess $ foldl parseLine empty ls
45 where
46 postProcess :: Graph −> Graph
47 postProcess graph = foldl parseLine graph newLines
48 where
49 ns = nodes graph
50 sinkNodes = S. difference ns $ M.keysSet $ outEdges graph
51 newLines = [n1 ++ ” ” ++ n2 |
52 n1 <− S.toList sinkNodes, n2 <− S.toList ns, n1 /= n2]
53

54 {−
55 Parse each line of the input file as an edge in the graph.
56 Each line of the input file should conform to the format ‘fromNode toNode‘.
57 −}
58 parseLine :: Graph −> String −> Graph
59 parseLine graph line =
60 let ws = words line
61 in case ws of

9

COMS 4995 W: Parallel Functional Programming Parallel PageRank w/ MapReduce

62 [fromNode, toNode] −>
63 Graph ns iEdges oEdges
64 where
65 ns = S.union (S.fromList ws) (nodes graph)
66 iEdges = M.insertWith (++) toNode [fromNode] (inEdges graph)
67 oEdges = M.insertWith (++) fromNode [toNode] (outEdges graph)
68 −> error ”All lines of the input file \
69 \should be in the format of ‘fromNode toNode‘”

Listing 3: src/Graph.hs

1 module MapReduce
2 (mapReduce)
3

4 where
5

6 import Control.Parallel (pseq)
7 import Control.Parallel . Strategies (rpar , runEval, parMap)
8

9 mapReduce ::
10 (a −> b) −− map function
11 −> ([b] −> c) −− reduce function
12 −> [a] −− list to map over
13 −> c
14 mapReduce mapper reducer input = pseq mapResult reduceResult
15 where mapResult = parMap rpar mapper input
16 reduceResult = runEval (rpar $ reducer mapResult)

Listing 4: src/MapReduce.hs

1 {−
2

3 This module defines the PageRank data type, which is a map from a node to its
4 current page rank value.
5

6 This module also contains the empty definition and some utility functions for
7 this data type, such as the mapper and the reducer functions to compute the page
8 rank values for a given graph with MapReduce, and also a sequential method to
9 compute page rank.

10

11 −}
12

13 module PageRank
14 (PageRank
15 , initFromGraph
16 , computePageRankSeq

10

COMS 4995 W: Parallel Functional Programming Parallel PageRank w/ MapReduce

17 , computePageRankMR
18) where
19

20 import Graph (Graph(..), Node)
21 import MapReduce (mapReduce)
22 import qualified Data.Map as M (Map, empty, fromList, lookup, unionWith, toList)
23 import qualified Data.Set as S (toList, size)
24 import Data.Maybe (fromJust)
25

26 type PageRankValue = Double
27 type PageRank = M.Map Node PageRankValue
28

29 −− Initial state of a PageRank data for an empty graph
30 empty :: PageRank
31 empty = M.empty
32

33 {−
34 Initial state of a PageRank data for a given graph, the page rank value
35 of each node is the reciprocal of the number of nodes in this graph
36 −}
37 initFromGraph :: Graph −> PageRank
38 initFromGraph graph =
39 let ns = nodes graph
40 pr = 1.0 / (fromIntegral $ S.size ns) in
41 M.fromList [(n, pr) | n <− S.toList ns]
42

43 mapper :: (PageRankValue, [Node]) −> PageRank
44 mapper (pr, outNodes) =
45 let pr = pr / (fromIntegral $ length outNodes) in
46 M.fromList [(n, pr) | n <− outNodes]
47

48 reducer :: [PageRank] −> PageRank
49 reducer [] = empty
50 reducer [x] = x
51 reducer (x:xs) = M.unionWith (+) x (reducer xs)
52

53 {−
54 Given initial PageRank and the corresponding graph, a number of iterations
55 to compute, and a damping factor, returns the resulting PageRank after those
56 iterations of computation in a parallel way with MapReduce
57 −}
58 computePageRankMR :: PageRank −> Graph −> Int −> Double −> PageRank
59 computePageRankMR pageRank 0 = pageRank
60 computePageRankMR pageRank graph itrs damping =
61 let nextPageRank = computeNextPageRankMR pageRank
62 in computePageRankMR nextPageRank graph (itrs−1) damping
63 where

11

COMS 4995 W: Parallel Functional Programming Parallel PageRank w/ MapReduce

64 computeNextPageRankMR :: PageRank −> PageRank
65 computeNextPageRankMR curPR =
66 let ns = S.toList $ nodes graph
67 input = map produceInput ns
68 produceInput n = (pr, outNodes)
69 where
70 pr = fromJust $ M.lookup n curPR
71 outNodes = fromJust $ M.lookup n $ outEdges graph
72 mrResult = mapReduce mapper reducer input
73 base = (1 − damping) / (fromIntegral $ length ns)
74 in M.fromList [(n, base + damping ∗ pr) | (n, pr) <− M.toList mrResult]
75

76 {−
77 Given initial PageRank and the corresponding graph, a number of iterations
78 to compute, and a damping factor, returns the resulting PageRank after those
79 iterations of computation in a sequential way
80 −}
81 computePageRankSeq :: PageRank −> Graph −> Int −> Double −> PageRank
82 computePageRankSeq pageRank 0 = pageRank
83 computePageRankSeq pageRank graph itrs damping =
84 let nextPageRank = computeNextPageRank pageRank
85 in computePageRankSeq nextPageRank graph (itrs−1) damping
86 where
87 computeNextPageRank :: PageRank −> PageRank
88 computeNextPageRank curPR =
89 M.fromList [(n, computePRValue n) | n <− ns]
90 where
91 ns = S.toList $ nodes graph
92 iEdges = inEdges graph
93 oEdges = outEdges graph
94 computePRValue :: Node −> PageRankValue
95 computePRValue n =
96 let inNodes = fromJust $ M.lookup n iEdges
97 in (1 − damping) / (fromIntegral $ length ns) + damping ∗ (foldl sumUp 0 inNodes)
98 where
99 sumUp acc node =

100 let numOutNodes = length $ fromJust $ M.lookup node oEdges
101 prValue = fromJust $ M.lookup node curPR
102 in acc + prValue / (fromIntegral numOutNodes)

Listing 5: src/PageRank.hs

1 {−
2 External MapReduce Lib used to implement a benchmark
3 GitHub repository of the MapReduce library: https://github.com/jdstmporter/Haskell−MapReduce
4 −}
5

12

COMS 4995 W: Parallel Functional Programming Parallel PageRank w/ MapReduce

6 {−# LANGUAGE MultiParamTypeClasses, FlexibleInstances #−}
7

8 −− | Module that defines the ’MapReduce’ monad and exports the necessary functions.
9 −−

10 −− Mapper / reducers are generalised to functions of type
11 −− @a −> ([(s,a)] −> [(s’,b)])@ which are combined using the monad’s bind
12 −− operation. The resulting monad is executed on initial data by invoking
13 −− ’runMapReduce’.
14 −−
15 −− For programmers only wishing to write conventional map / reduce algorithms,
16 −− which use functions of type @([s] −> [(s’,b)])@ a wrapper function
17 −− ’liftMR’ is provided, which converts such a function into the
18 −− appropriate monadic function.
19 module MapReduceLibExt (
20 −− ∗ Types
21 MapReduce,
22 −− ∗ Functions
23 −−
24 −− ∗∗ Monadic operations
25 return, (>>=),
26 −− ∗∗ Helper functions
27 run, distribute , lift) where
28

29 import Data.List (nub)
30 import Control.Applicative ((<$>))
31 import Control.Monad (liftM)
32 import Control.DeepSeq (NFData)
33 import System.IO
34 import Prelude hiding (return,(>>=))
35 import Data.Digest.Pure.MD5
36 import Data.Binary
37 import qualified Data.ByteString.Lazy as B
38 import Control.Parallel . Strategies (parMap, rdeepseq)
39

40 −− | The parallel map function; it must be functionally identical to ’map’,
41 −− distributing the computation across all available nodes in some way.
42 pMap :: (NFData b) => (a −> b) −− ˆ The function to apply
43 −> [a] −− ˆ Input
44 −> [b] −− ˆ output
45 pMap = parMap rdeepseq
46

47 −− | Generalised version of ’Monad’ which depends on a pair of ’Tuple’s, both
48 −− of which change when ’>>=’ is applied.
49 class MonadG m where
50 return :: a −− ˆ value.
51 −> m s x s a −− ˆ transformation that inserts the value
52 −− by replacing all

13

COMS 4995 W: Parallel Functional Programming Parallel PageRank w/ MapReduce

53 −− the key values with the specified
54 −− value, leaving the data unchanged.
55

56

57 (>>=) :: (Eq b,NFData s’’,NFData c) =>
58 m s a s ’ b −− ˆ Initial processing chain
59 −> (b −> m s’ b s’’ c)−− ˆ Transformation to append to it
60 −> m s a s’’ c −− ˆ Extended processing chain
61

62

63 −− | The basic type that provides the MapReduce monad (strictly a generalised monad).
64 −− In the definition
65 −− @(s,a)@ is the type of the entries in the list of input data and @(s’,b)@
66 −− that of the entries in the list of output data, where @s@ and @s’@ are data
67 −− and @a@ and @b@ are keys.
68 −−
69 −− ’MapReduce’ represents the transformation applied to data by one or more
70 −− MapReduce staged. Input data has type @[(s,a)]@ and output data has type
71 −− @[(s’,b)]@ where @s@ and @s’@ are data types and @a@, @b@ are key types.
72 −−
73 −− Its structure is intentionally opaque to application programmers.
74 newtype MapReduce s a s’ b = MR { runMR :: [(s,a)] −> [(s’,b)] }
75

76 −− | Make MapReduce into a ’MonadG’ instance
77 instance MonadG MapReduce where
78 return = ret
79 (>>=) = bind
80

81 −− | Insert a value into ’MapReduce’ by replacing all the key values with the
82 −− specified value, leaving the data unchanged.
83 ret :: a −− ˆ value
84 −> MapReduce s x s a −− ˆ transformation that inserts the value
85 −− into ’MapReduce’ by replacing all
86 −− the key values with the specified
87 −− value, leaving the data unchanged.
88 ret k = MR (\ss −> [(s,k) | s <− fst <$> ss])
89

90 −− ˆ Apply a generalised mapper / reducer to the end of a chain of processing
91 −− operations to extend the chain.
92 bind :: (Eq b,NFData s’’,NFData c) =>
93 MapReduce s a s’ b −− ˆ Initial state of the monad
94 −> (b −> MapReduce s’ b s’’ c) −− ˆ Transformation to append to it
95 −> MapReduce s a s’’ c −− ˆ Extended transformation chain
96 bind f g = MR (\s −>
97 let
98 fs = runMR f s
99 gs = map g $ nub $ snd <$> fs

14

COMS 4995 W: Parallel Functional Programming Parallel PageRank w/ MapReduce

100 in
101 concat $ pMap (‘runMR‘ fs) gs)
102

103 −− | Execute a MapReduce MonadG given specified initial data. Therefore, given
104 −− a ’MapReduce’ @m@ and initial data @xs@ we apply the processing represented
105 −− by @m@ to @xs@ by executing
106 −−
107 −− @run m xs@
108 run :: MapReduce s () s’ b −− ˆ ’MapReduce’ representing the required processing
109 −> [s] −− ˆ Initial data
110 −> [(s’,b)] −− ˆ Result of applying the processing to the data
111 run m ss = runMR m [(s,()) | s <− ss]
112

113 −− | The hash function. Computes the MD5 hash of any ’Hashable’ type
114 hash :: (Binary s) => s −− ˆ The value to hash
115 −> Int −− ˆ its hash
116 hash s = sum $ map fromIntegral (B.unpack h)
117 where
118 h = encode (md5 $ encode s)
119

120 −− | Function used at the start of processing to determine how many threads of processing
121 −− to use. Should be used as the starting point for building a ’MapReduce’.
122 −− Therefore a generic ’MapReduce’ should look like
123 −−
124 −− @’distribute ’ ’>>=’ f1 ’>>=’ . . . ’>>=’ fn@
125 distribute :: (Binary s) => Int −− ˆ Number of threads across which to distribute initial data
126 −> MapReduce s () s Int −− ˆ The ’MapReduce’ required to do this
127 distribute n = MR (\ss −> [(s,hash s ‘mod‘ n) | s <− fst <$> ss])
128

129 −− | The wrapper function that lifts mappers / reducers into the ’MapReduce’
130 −− monad. Application programmers can use this to apply MapReduce transparently
131 −− to their mappers / reducers without needing to know any details of the implementation
132 −− of MapReduce.
133 −−
134 −− Therefore the generic ’MapReduce’ using only traditional mappers and
135 −− reducers should look like
136 −−
137 −− @’distribute ’ ’>>=’ ’lift ’ f1 ’>>=’ . . . ’>>=’ ’lift ’ fn@
138 lift :: (Eq a) => ([s] −> [(s’,b)]) −− traditional mapper / reducer of signature
139 −− @([s] −> [(s’,b)]@
140 −> a −− the input key
141 −> MapReduce s a s’ b −− the mapper / reducer wrapped as an instance
142 −− of ’MapReduce’
143 lift f k = MR (\ss −> f $ fst <$> filter (\s −> k == snd s) ss)

Listing 6: src/MapReduceLibExt.hs

15

COMS 4995 W: Parallel Functional Programming Parallel PageRank w/ MapReduce

1 {−
2 The benchmark PageRank computation implementation based on external opensourced MapReduce library
3 GitHub repository of the MapReduce library: https://github.com/jdstmporter/Haskell−MapReduce
4 −}
5

6 module PageRankExt
7 (
8 computePageRankMRext
9) where

10

11 import Graph (Graph(..), Node)
12 import qualified Data.Map as M (Map, empty, fromList, lookup, unionWith, toList)
13 import qualified Data.Set as S (toList, size)
14 import Data.Maybe (fromJust)
15 import MapReduceLibExt (run,distribute, lift ,(>>=))
16

17 type PageRankValue = Double
18 type PageRank = M.Map Node PageRankValue
19

20 empty :: PageRank
21 empty = M.empty
22

23 initFromGraph :: Graph −> PageRank
24 initFromGraph graph =
25 let ns = nodes graph
26 pr = 1.0 / (fromIntegral $ S.size ns) in
27 M.fromList [(n, pr) | n <− S.toList ns]
28

29 mr :: Double −> Double −> Int −> [(Node, (PageRankValue, [Node]))] −> [(Node, (PageRankValue, [Node]))]
30 mr damping numNodes n state = run f state
31 where
32 f = distribute n MapReduceLibExt.>>= lift mapper MapReduceLibExt.>>= lift (reducer damping numNodes)
33

34 −− According to the specification of Haskell−MapReduce lib
35 −− mapper should take the form of [s] −> [(s’, a)]
36 −− where s is input data, s’ is output data and a is output key
37 mapper :: [(Node, (PageRankValue, [Node]))] −> [((Node, (PageRankValue, [Node])), Node)]
38 mapper [] = []
39 mapper (x:xs) = parse x ++ mapper xs
40 where
41 parse (n, (pr , outNodes)) =
42 let pr = pr / (fromIntegral $ length outNodes)
43 in ((n, (0, outNodes)), n) : [((n , (pr , [])), n) | n <− outNodes]
44

45 −− According to the specification of Haskell−MapReduce lib
46 −− reducer should take the form of [s ’] −> [s’’]
47 −− where s’ is output data of mapper, s’’ is output data of reducer

16

COMS 4995 W: Parallel Functional Programming Parallel PageRank w/ MapReduce

48 reducer :: Double −> Double −> [(Node, (PageRankValue, [Node]))] −> [(Node, (PageRankValue, [Node]))]
49 reducer [] = []
50 reducer damping numNodes xs@(x:) =
51 [foldl f (fst x, ((1 − damping) / numNodes, [])) xs]
52 where f x y = (
53 fst x,
54 (
55 (fst $ snd x) + damping ∗ (fst $ snd y),
56 (snd $ snd x) ++ (snd $ snd y)
57)
58)
59

60 computePageRankMRext :: PageRank −> Graph −> Int −> Double −> PageRank
61 computePageRankMRext pageRank 0 = pageRank
62 computePageRankMRext pageRank graph itrs damping =
63 let ns = S.toList $ nodes graph
64 numNodes = fromIntegral $ length ns
65 oEdges = outEdges graph
66 initMRinput = map toMRinput ns
67 toMRinput n =
68 let pr = fromJust $ M.lookup n pageRank
69 outNodes = fromJust $ M.lookup n oEdges
70 in (n, (pr , outNodes))
71 mrOutput = mrItr initMRinput damping numNodes itrs
72 in M.fromList [(n, pr) | (n, (pr ,)) <− mrOutput]
73 where
74 mrItr :: [(Node, (PageRankValue, [Node]))] −> Double −> Double −> Int −> [(Node, (PageRankValue, [Node]))]
75 mrItr input 0 = input
76 mrItr input damping numNodes itrs =
77 let output = mr damping numNodes 1 input
78 in mrItr output damping numNodes (itrs−1)

Listing 7: src/PageRankExt.hs

1 import Data.Map as M (toList)
2

3 import ProcessData (processData)
4 import PageRank (computePageRankMR)
5

6 main :: IO ()
7 main = do
8 (graph, pageRank) <− processData ”../data/sample input.txt”
9 let resPageRank = computePageRankMR pageRank graph 10 0.85

10 mapM putStrLn [n ++ ”: ” ++ show pr | (n, pr) <− M.toList resPageRank]

Listing 8: test/Spec.hs

17

	Introduction
	Problem Formulation
	Implementation
	Data Type Definitions
	Nodes
	Edges
	Graph
	PageRank

	Sequential Solution
	Parallel Solution with customized MapReduce
	Benchmark based on External MapReduce Library

	Evaluation
	Settings
	Experiment Results
	Performance Analysis

	Code Listing

