Parallelized N-Gram Language Modeling with Stupid Backoff
for Text Generation

Project Report - COMS 4995 Parallel Functional Programming

Dave Epstein
ne2260

1 INTRODUCTION
I develop a parallelized n-gram language model in Haskell. The program works on arbitrarily sized corpora of text in any whitespace-delimited language and can be extended to others by changing the words and splitSpecialChars functions. The program achieves around 94% of the ideal speedup given by Amdahl’s law on 8 HECs (6.14×, on average) and processes the majority of Wikipedia (~3M documents) into a language model in 10 minutes. It lazily builds up and merges a forest of n-gram tries and is optimized for efficient usage in common settings. When the model encounters unseen sequences of text during inference, it uses the stupid backoff strategy to compute a reasonable probability estimate. In the generative setting, the model implements a variant of diverse beam search to create more interesting, varied outputs. The entire program, including imports of dependencies, comments, error handling, and command line parsing, is implemented in 352 lines. The core logic is around 150 lines.

2 BUILDING A LANGUAGE MODEL
The primary part of this program can be thought of as a function that takes in an input file of some text type and returns an n-gram in some data structure. In this section, I describe the approach I use to implement this function (don’t worry, I use far more than just one function to do so). The general approach reads in text lazily with Data.Text.Lazy.IO to a function splitIntoDocs. The corpus is then tokenized by calling tokenize and processed into a forest of tries by calling triesFrom.

2.1 Processing Input
Since corpus files may be very large (I use one around 6 GB), reading it all into memory before running any processing or computation is exorbitantly wasteful. Lazy IO is a necessity, with three main options: String, ByteString, and Text. Text deals most naturally with actual, non-byte-level text at an almost negligible increase in runtime and memory, while also allowing the usage of non-ASCII characters (critical for non-English language models). String is a linked list of characters internally as opposed to Text’s packed representation, and as such is empirically worse in every way.

The raw Text is converted into a Corpus composed of Documents, which in turn are composed of lines of Text, by processing with splitIntoDocs (pack docSep) . filter (/= empty) . lines. docSep, passed in through the command line, marks the value of a line that delineates between documents in the corpus file. Each UntokenizedLine is transformed into a Line composed of Tokens by calling map . map tokenize. The user can also specify how many documents to read from the corpus, useful for large corpora, with the ndocs parameter.

Once we have the input text file segmented into documents of tokenized lines, we need to slide an n-wide window across a line to generate all possible n-grams. In practice, we want to keep even incomplete n-grams at the end of the sentence to maintain accurate word counts. nGrams n line :: [NGram] runs this operation, making sure to pad the beginning of the line with n – 1 special tokens <$> indicating beginning of sentence. For example, with n = 3 and a sentence ["point", "free", "programming"], the first n-gram generated is ["<s>", "<s>", "point"] and the last one is ["programming"]. These n-grams are computed by first concatenating all Lines in a document and then running the n-wide window on the concatenated sentence.

2.2 Storing N-Grams
Now that we have described how to go from Text -> [NGram], we can start talking about the fun stuff. We need an efficient way to store these n-grams in memory that matches the access patterns of realistic language model usage while not being prohibitively expensive (in either space or time) to create. I define realistic language model usage as using either of the two provided test-time functionalities: sentence probability scoring and sentence completion using random, greedy, or diverse beam search. These usage patterns require the following main operations:

(1) getCount :: NGram -> Int
(2) getPrevCount :: NGram -> Int, which can be defined as f [] = 0 and f x:xs = getCount xs since type NGram = [Token]
(3) merge :: OurDataStructure -> OurDataStructure -> OurDataStructure to combine different instances (e.g., across documents, helpful for parallelizing)
(4) mergeMany :: [OurDataStructure] -> OurDataStructure which trivially follows

2.2.1 Bad: Lists and Maps. The most naïve way to store the list of Ngrams and their counts may be [[NGram, Int]]. This is pretty bad because operations (1) and (2) above cost O(n · N) time, and the last two cost O(n · N^2), where N is the total number of n-grams being considered by the function and n is as in n-gram. We can not combine the first two operations into one pass either since the data structure is flat and not hierarchical. Still, some of these costs can be improved by using Map NGram Int or some variant, decreasing the cost by operations (1) and (2) to O(n log N) and operations

3type Token = T.Text, type Line = [Token], etc.
4For all reasonable values of n and N
(3) and (4) to $O(n \cdot N)$. In practice, both of these approaches are prohibitively slow and memory-hungry. They both suffer from a factor of N in all their costs since they use lists of tokens as keys. This is particularly bad (since we exactly want to work in the large-N regime) and should be avoided with a more fitting data structure...

2.2.2 Good: Tries. Let’s use tries (annoyingly pronounced just like "trees") instead. Tries are frequently used as an efficient data structure for storing strings, for applications like spell-checking (in fact, Haskell has a very good one in Data.Trie). However, we can’t use that implementation because we wish to store a Token at each node and not a Char, so we make our own: $\text{data Trie} = \text{Trie Int}$ (Map Token Trie). Note that the Nil is implicitly provided by a key’s absence from the map. In this formulation, an n-gram is stored recursively in a trie, starting from a root node. Now, ops (1) and (2) take $O(n + \log V)$ time on average, where V is the size of the vocabulary we consider, with no added cost of calling both together (see L155-158 of Lib.hs). Figure 1 shows the sensitivity of these complexity derivations. Ops (3) and (4) now take $O(n)$ time on average. Indeed, this is much better than using one global list or map. Note that even in the worst-case scenario, the factor of N is entirely absent from big-O costs (and $V << N$).

Storing Children. Since we use a recursive data structure, we need some dynamic way to store children. Above, I suggest the Map, but we can use List or HashMap instead (or, stupidly, IntMap with a separately maintained Token -> Int function, but this is a worse version of what HashMap does internally). Empirically, Map and HashMap are best, and they perform almost identically. I suspect the overhead of HashMap cancels out its faster lookup and merge operations in a typical use-case. For simplicity, I just use Map.

Strictness. Having chosen Map to store Tries recursively, the decision between a strict and lazy version remains, with profound effects on parallelism. The lazy version offloads all work on its keys to an on-demand basis, which is much less parallelizable than fully evaluating a key as part of a sparked job. As such, performance significantly improves by switching from Map.Lazy to Map.Strict.

Tries as Monoids. Joyously, our Tries are Monoids (see L23-28 of Lib.hs). We now have operations (3) and (4) given by (\cdot) and mconcat, and elegantly defined using Map.unionWith (\cdot) to recurse.

2.3 Constructing a Model

Now, all that is left is to define a function $\text{triesFrom :: Corpus -> Trie}$ (the actual type signature in code is slightly different, and returns a forest of tries [Trie]). This function builds a trie for each document separately using $\text{buildTrie :: [NGram] -> Trie}$, optionally prunes infrequent paths in the trie with pruneTrie, and then optionally merges the tries using mergeTries (which utilizes mconcat but is not identical to it when parallelizing). Of course, this structure is designed with parallelism at the forefront, and it is rich in maps of non-trivial functions that are well-suited to running concurrently on separate cores.

We define $\text{buildTrie} = \text{foldl’ insertNGram mempty, and insertNGram}$ traverses the input trie, calling itself to appropriately augment nodes along the n-gram’s path (L126-134 in Lib.hs). Thus, buildTrie inserts n-grams one at a time starting from an empty trie. This operation is $O(n \cdot N)$ where there are N n-grams in the input to the function. Note that this time complexity increases to $O(N^2)$ on one large list and $O(N \log N)$ on one large map (the naïve structures discussed in Section 2.2.1), but stays the same if we were to use a list instead of a map to store elements at trie nodes. In practice, there is some constant factor that scales cost which is exponentially larger when using lists (thanks to Map’s $O(\log N)$ insert that doesn’t require a linear search).

The tries can then be optionally processed to prune low-frequency paths to save memory and improve runtime slightly, and merged into one final large trie. Thanks to Haskell’s laziness, though, it is much faster not to eagerly merge all tries into one (very expensive and, since it is a fold, not good for parallelizing). Instead, we lazily merge tries when it is absolutely necessary, preferring strongly to run independent computations on each trie and merge their results, as discussed later in Section 4.3.

3 USING A LANGUAGE MODEL

Now that we have a built language model (in the form of a trie forest) we should use it to do some cool things. In the project proposal, I mentioned diverse beam search, which I implement and discuss in Section 3.2.2. I also implement stochastic and greedy sentence completion (the latter is beam search with $\beta = 1$), and write a simple function to evaluate the likelihood of a sentence given the training corpus. All the above functionalities use stupid backoff internally. This functionality can be used, e.g., to discriminate between candidate speech transcripts or sentence translations to find the most fluent one.

Since both general usage modes follow the same "prompt-compute-return" loop, I write a function $\text{promptLoop :: String -> (String}$

5Assuming the two maps never differ in size by more than some large constant factor
6The log V term comes from the fact that every word in the vocabulary will appear in the root node’s Map. If every word realistically could follow every other word in some language, this becomes $O(n \log V)$. In practice, that does not happen.
7With the same assumptions about the long-tail distribution of language

8Again under the assumption of very low average map size (or some constant upper bound)
We work in log space and add to avoid numerical underflows. In lineComplete
with a 1% chance at each iteration, giving an expected sentence
most fluent translation.

\[\text{line (which is transformed into } \text{stdin} \text{-to-output function and generalizes control flow.} \]

3.1 Sentence Probability

The lineScore function takes in the trie forest and an untokenized
line (which is transformed into [NGram] using text processing functions
described in Section 2.1) and returns a probability score defined as:

\[
s((w_i)_0^N) = \sum_{(w_i)_0^N} \log P(w_i | w_{i-1})
\]

\[
P(w_i | w_{i-1}) = \frac{C(w_{i-1})}{C(w_{i-1})}
\]

We work in log space and add to avoid numerical underflows. In practice, when \(C(w_{i-1}) = 0\), the model defines:

\[
P(w_i | w_{i-1}) = \lambda \cdot P(w_i | w_{i-1})
\]

This shrinks the context by one gram and scaling the score down by a constant factor \(\lambda \) (I use \(\lambda = 0.4\)). Since this formulation no longer yields a probability distribution where all terms sum up to 1, some NLP literature prefers using \(S\) for score instead of \(P\) for probability. I avoid this notation here for conciseness.

The function nGramScore returns the probability score for one
\(n\)-gram by computing the getCount and getCountUpto values
sketched out in Section 2.2. This function is interesting since it computes these counts for each trie in the forest separately and parallelly, combines them by summing tuples, then computes the final score. This is several times faster than lazily merging the tries and taking the counts in the final merged trie, highlighting the importance of correct order of operations. Further, each \(n\)-gram’s score is computed independently and is parallelized.

Figure 2 demonstrates this functionality and shows some scores assigned to three candidate translations output by a Chinese-to-
English translator. As expected, the most fluent sentence gets the highest score.

3.2 Sentence Completion

The lineComplete function does some processing on the input string received by promptLoop and feeds its last \(n\)-gram to either of two monadic text-generation functions: randomSearch or beamSearch. Both these functions call themselves to generate the next token based on previous input and output. They terminate with a 1% chance at each iteration, giving an expected sentence

\[\text{Figure 2 demonstrates this functionality and shows some scores}
\]

(1) The first 20 million is always the hardest, because it takes years to build up
the amount of existing support that an open entry creates. But in general,
once a winner is determined, it’s difficult for anybody to “squeeze” the other
bidders out of the process.

(2) The first blast of the trumpet comes from right in the middle of the crowd,
and it hits just above the one chord the trumpet has needed to play: B. You
can use the same concept here for things like A, E and G.

(3) The first Fat Truckers album is for sale, a 12-inch that features four songs—one
for each of the five main intersections of each company’s North American
route—with song titles such as ‘All Of These Cities Won’t Be There For Long’
and ‘Up On The Roof’

(4) The first circle of the Coronado Peninsula was closed off on March 29th, 1962
in an attempt to create a reef habitat that would protect the southern edge of
the Coronado Peninsula from encroachment by an expanding freeway.

(5) The first four years of the war involved about 110,000 combatants and 140,000
civilians. The troops and civilian forces suffered several thousand casualties
in the first six months, with about 650,000 people being injured.

\[\text{Figure 3: “The first...”: Some sentence completions with diverse beam search (} \beta = 5\). Capitalization and spacing were adjusted for readability.} \]

\[\text{Figure 4: Building a forest with triesFrom on 1M documents}
\]

\[\text{with 8 cores. Threadscope shows near-perfect utilization throughout}
\]

\[\text{the entire program runtime (full evaluation is forced using deepseq). Note}
\]

\[\text{that times on the top axis are not wall-clock.} \]

length of 100 tokens. This parameter is arbitrary and can easily be
consumed as a command line parameter if desired.

\[\text{3.2.1 Stochastic. In stochastic text generation of } n\text{-grams, the } i^{th}
\]

word is chosen with probability \(P(w_i | w_{i-1})\) as defined in
Equation 1. A random number \(r \in [0, 1]\) is drawn and used to select
the next word, where each word covers up an interval of the \([0, 1]\)
number line of length \(P(i)\). Computing this value across a forest
of tries for many words is somewhat expensive, so we merge trie
nodes as necessary with a light wrapper around mconcat and run
the computations on the result in the randomSearchTok function.

In this variant of stupid backoff, if the previous \(n - 1\) words of
context never appeared in sequence in the training set, the function
resorts to using \(n - 2\) words of context instead. Outputs from this
function are not insensible, since they are conditioned on training
data, but are still essentially nonsensical over long sequences. To
alleviate this, we need a better sampling strategy...

\[\text{3.2.2 Diverse Beam Search. One slight adjustment we can make}
\]

\[\text{to random search to output likelier sentences is to sample greedily}
\]
To reintroduce diversity into sentence completions, we can use a greedy search where we take the b best alternatives from the previous iteration (or the input sentence, at iteration 0), expand them, pick the top β, and repeat. Of course, with $\beta = 1$ this is a regular greedy search. In practice, $\beta \in [3, 20]$ is used, and I set $\beta = 5$.

While standard beam search somewhat improves the variety of outputs from the model, it still tends to have high overlap between different beams of output.

To discourage this, the score assigned to an n-gram can be augmented with a diversity constraint. The simplest one, which is often used in practice with good results, assigns a penalty α to the ith word of the bth beam w_i^b if any of $w_i^{b'} = w_i^b (b \neq b')$. With this system in place ($\alpha = 20$ in practice), the model outputs an interesting variety of sentences (as in Figure 3).

4 \hspace{1em} PARALLELIZING

While the structures described above were of course designed with parallelism in mind, they do not require it to run. On one core, the program can process the entirety of the > 3M-article Wikipedia corpus into a language model in under an hour. When multiple cores are brought into the equation and the program is intelligently parallelized (there are a few small pitfalls in algorithm design that, when avoided, make a big difference), speedups of 6–7× are possible, in close agreement with the theoretical limit yielded by Amdahl’s law.

4.1 Amdahl Strikes Again

To compute the parallelizable portion of the task P in $S = \frac{1}{(1-P)+\frac{P}{N}}$, I run `untokCorpus` `deepseq` `()` to force the full processing of the text file on one core (the tokenization is parallelized, so is not included in this calculation). I then run the full computation of the trie forest also on one core and set P as the ratio of these two times. Averaging across three runs, I find $P \approx 2.95\%$, giving a maximum theoretical speedup of 6.61× on 8 HECs or 33.9 as $N \to \infty$. In practice, the overhead of running on more cores seems to start

4.2 A Universal Parallelization Strategy

Compared to most other languages, Haskell has a truly beautiful ability to parallelize. I define a helper function `par' = ('using' `parBuffer` `bufferSize` `rdeepseq`) which I apply systematically to eight different `map` operations, which range from tokenizing corpus documents to computing beam search candidates. Each one of these improvements significantly improves speedup metrics and together they yield a very satisfying graph of CPU utilization (Figure 4).

Further indicating the effectiveness of this simple approach is the total-to-elapsed ratio in Figure 6 (computed by running programs with `+RTS -s`) that Marlow uses to quantifiy the power of going parallel. At 32 HECs, this ratio tops out at 10.5. I opt for `parBuffer` instead of `parList` because they behave similarly on shorter lists but the former is not strict in the spine of the list, especially important for the size of corpus being considered in this project. I find this universal, relatively naive approach to be highly effective.

The program scales effectively (around $O(N)$) to large corpora. Figure 7 shows program run-time as a function of corpus size. One could even download a more recent dataset (~3.3B words) used to train state-of-the-art machine learning models, which is around double the size of the corpus I use, and build an n-gram model in under half an hour on an 8-core machine!

4.3 Lazy N-Gram Merging

A sensible approach, and indeed the one I initially adopted, is to eagerly merge all the tries collected for each document into one big trie. This becomes quite an expensive operation when merging larger tries, and tries get large very fast with a function like `fold1` `mergeTwoTries` `mempty`. One way to mitigate this damage is to split the forest of tries into subforests of a fixed small size (say k), merge each subforest separately and parallelly, and return a new forest (smaller by a factor of k), repeating until only one large trie is left. This approach is already significantly faster empirically, and is easily implemented in `mergeTries` (L146-150), but still slows down
runtime since the last larger merges keep only a few HECs busy. The

Figure 7: Execution time on 8 cores on corpora of 100-3M documents. The x-axis is in log scale to show finer patterns in data. Note that the function appears to grow on the order of N, the size of the corpus.

key observation is that using the language model does not require pre-merging the forest into one large trie. Many operations (such as assigning a sentence a probability, as in Section 3.1) can be done on each trie separately and cheaply merged even across millions of tries. Other operations do require merging tries to sensibly implement, but merging the trie nodes belonging to some (on average, quite infrequent) n-gram is many times cheaper than pre-merging the whole forest. Offsetting the merge operation either to cheap data derived from each trie separately or to much smaller subtries was probably the single largest contributor to faster runtime.

5 USAGE

The program can be simply built by executing stack build from the program directory. It can then be run with stack exec -- stupidlm-exe [OPTIONS]. Running without any options yields the following helptext:

Usage: stupidlm-exe (-m|--mode MODE) (-f|--corpus-file FILENAME)
[[-n|--ngrams NUMBER] --ndocs NUMBER]
[[-s|--doc-separator SEPARATOR]
[[-t|--freq-threshold NUMBER]
[--complete-mode MODE]]

Build a language model from a given corpus, then use it to assign probability scores to input lines, or to auto-complete them (similar to your smartphone keyboard).

Available options:
 -h,--help Show this help text
 -m,--mode MODE Operating mode (buildOnly, score, complete)
 -f,--corpus-file FILENAME Path to corpus file
 -n,--ngrams NUMBER Size of n-gram (default: 3)
 --ndocs NUMBER Number of documents to parse (-1 to parse all) (default: -1)
 -s,--doc-separator SEPARATOR Line that separates documents in corpus (default: "---END.OF.DOCUMENT---")
 -t,--freq-threshold NUMBER Prune all n-grams that occur fewer than k times (default: 8)
 --complete-mode MODE Operating mode if --mode is complete (beamSearch, greedy, random) (default: "beamSearch")

The buildOnly mode processes a forest of tries and deepseqs through them to force full evaluation. The other two modes implement the functionalities described in Section 3.
6 CODE (352 LINES)

src/Lib.hs

{-# LANGUAGE OverloadedStrings #-}
{-# LANGUAGE ViewPatterns #-}

module Lib (splitIntoDocs, tokenize, pruneTrie, triesFrom, lineScore, lineComplete,
 Trie, docNGrams, par') where

import Control.DeepSeq (NFData, rnf)
import Control.Monad (ap, join)
import Control.Parallel.Strategies (parBuffer, rdeepseq, using)
import Data.Char (isPunctuation, isSymbol)
import Data.List (foldl', foldl1', intercalate,
 sortBy, unzip3, zip4)
import Data.List.Split (chunksOf, divvy, splitOn)
import qualified Data.Map.Strict as M
import Data.Maybe (mapMaybe)
import qualified Data.Text.Lazy as T
import System.Random (randomRIO)

--- Types ---
data Trie = Trie Count (M.Map Token Trie)

instance Semigroup Trie where
 (Trie c1 m1) <> (Trie c2 m2) = Trie (c1 + c2) $ M.unionWith (<>') m1 m2

instance Monoid Trie where
 mempty = Trie 0 M.empty
 mconcat = foldl1' (<>')

instance NFData Trie where
 rnf (Trie c m) = rnf c `seq` rnf m

instance Show Trie where
 show t = show_ t 1
 where
 show_ (Trie c m) d
 | null m = show c
 | otherwise = "(" ++ show c ++ ", " ++
 dictShow (sortBy (\(_, Trie a _) (_) _, Trie b _) -> compare b a) (M.toList m)) d
 ++ ")"
 dictShow 1 d = "\n" ++ intercalate ", " (map (\(k, v) -> "\n" ++
 replicate (d * 2) ' ' ++ show k ++ ": " ++ show_ v (d + 1))
 l) ++ "\n" ++ replicate ((d - 1) * 2) ' ' ++ "")"

-- Types for building the trie --
type Token = T.Text

type Line = [Token]

type NGram = [Token]

type Document = [Line]

type Corpus = [Document]
type UntokenizedLine = T.Text

type UntokenizedDocument = [UntokenizedLine]

type UntokenizedCorpus = [UntokenizedDocument]

-- Types for using the trie --
type Count = Int

type ApproxCount = Float

type Score = Float

-- Adapted from Data.Text's split function to keep separators
splitKeepSeps :: (Char -> Bool) -> T.Text -> [T.Text]
splitKeepSeps _ t@(T.null -> True) = [t]
splitKeepSeps p t = loop t
 where
 loop s
 | T.null s' = [l]
 | otherwise = l : T.singleton (T.head s') : loop (T.tail s')

where
\[(1, s') = T.\text{break} \ p \ s\]

tokenize :: UnTokenizedLine \rightarrow Line

tokenize = filter (/= T.empty) . splitSpecialChars . T.words . T.toLower

where

splitSpecialChars =
 concatMap $ splitKeepSeps $ oneOf [isPunctuation, isSymbol]

oneOf ps = or . ap ps . return

--- Functions for building n-gram tries ---

docNGrams :: Int \rightarrow Document \rightarrow [NGram]
docNGrams = (. join) . nGrams

insertNGram :: Trie \rightarrow NGram \rightarrow Trie

insertNGram (Trie c m) [] = Trie (c + 1) m

insertNGram (Trie c m) (gram:grams) = Trie (c + 1) $ M.alter go gram m

where

 go Nothing = Just $ insertNGram mempty grams
 go (Just t) = Just $ insertNGram t grams

buildTrie :: [NGram] \rightarrow Trie

buildTrie = foldl' insertNGram mempty

allTriesFrom :: Int \rightarrow Corpus \rightarrow [Trie]

allTriesFrom n = par' . map (buildTrie . docNGrams n)

triesFrom :: Int \rightarrow Count \rightarrow Corpus \rightarrow [Trie]

triesFrom n = (par' .) (. allTriesFrom n) . mapMaybe . pruneTrie

pruneTrie :: Count \rightarrow Trie \rightarrow Maybe Trie

pruneTrie gramThreshold (Trie c m)
 | c < gramThreshold = Nothing
 | otherwise = Just $ Trie c $ M.mapMaybe (pruneTrie gramThreshold) m

mergeTries :: [Trie] \rightarrow Trie

mergeTries [ts] = ts

mergeTries ts = mergeTries $ mergeTriesOnce ts

where

 mergeTriesOnce = par' . map mconcat . chunksOf chunkSize

--- Functions for using n-gram tries to compute probability of text ---

counts :: NGram \rightarrow Count \rightarrow Maybe Trie \rightarrow (Count, Count)

counts _ prev_c Nothing = (0, prev_c)

counts [] prev_c (Just (Trie c _)) = (c, prev_c)

counts (gram:grams) _ (Just (Trie c m)) = counts grams c $ M.lookup gram m

countsStupidBackoff :: NGram \rightarrow Maybe Trie \rightarrow (ApproxCount, ApproxCount)

countsStupidBackoff [] _ = (backoffWt ^ (100 :: Int), 1) -- Word not seen in training

countsStupidBackoff ngram trie
 | c == 0 =
 let (c_bo, prev_c_bo) = countsStupidBackoff (tail ngram) trie -- Back off stupidly
 in (backoffWt * c_bo, prev_c_bo)
 | otherwise = (fromIntegral c, fromIntegral prev_c)

where

c (c, prev_c) = counts ngram @ trie
Parallelized N-Gram Language Modeling with Stupid Backoff for Text Generation

169 nGramScore :: [Trie] -> NGram -> Score
170 nGramScore tries ngram =
171 let (c, prev_c) =
172 sumTuples (par' $ map (countsStupidBackoff ngram . pure) tries)
173 in log c - log prev_c
174 where
175 sumTuples = foldl1' (\(a1, b1) (a2, b2) -> (a1 + a2, b1 + b2))
176
177 lineScore :: [Trie] -> Int -> UntokenizedLine -> Score
178 lineScore tries n =
179 sum . par' . map (nGramScore tries) . divvy n 1 .
180 (replicate (n - 1) bosToken ++) . tokenize
181
182 --- Functions for using n-gram tries to generate text ---
183 trieFind :: NGram -> Maybe Trie -> Maybe Trie
184 trieFind [] t = t
185 trieFind _ Nothing = Nothing
186 trieFind (gram:grams) (Just (Trie _ m)) = trieFind grams $ M.lookup gram m
187
188 trieFindMerge :: NGram -> [Trie] -> Trie
189 trieFindMerge n = mergeTries . par' . mapMaybe (trieFind n . Just)
190
191 topBToks :: Int -> Trie -> [(Token, Score)]
192 topBToks b (Trie c m) =
193 map (\(tok, Trie c1 _) -> (tok, log (fromIntegral c1) - log (fromIntegral c))) $ take b $ sortBy (\(_, Trie c1 _) (_, Trie c2 _) -> compare c2 c1) $ M.toList m
194
195 -- Penalize with Hamming distance, number of shared (ordered) tokens between two lines
196 -- sim("Functional programming is cool and advanced", "Advanced Programming is boring") = 2
197 diversify :: [BeamState] -> [(BeamState, Score)]
198 diversify = f []
199 where
200 f _ [] = []
201 f hs (x@(c, _, h):xs) =
202 (x, penaltyWt * fromIntegral (sim h hs)) : f (h : hs) xs
203 sim _ [] = 0
204 sim h hs =
205 length $ filter id $ foldl1' (zipWith (||)) $ map (zipWith (==) h) hs
206
207 -- Each current state has b candidate expansions
208 -- We define state as a tuple of score, history, current n gram, and list of expansions
209 -- Process each expansion into its own state by merging its information with parent state
210 scoreCandidates :: [PotentialBeamState] -> [(BeamState, Score)]
211 scoreCandidates = diversify . concatMap f
212 where
213 f (n, s, h, cs) = map (\(tok, s') -> (tail n ++ [tok], s + s', tok : h)) cs
214
216 -> IO String
217 beamSearch b tries ngrams scores hists input = do
218 randExitFlag <- randomRIO (0, 100 :: Int)
219 let histStr = unlines $ map (T.unpack . T.unwords . (input :) . reverse) hists
220 beamTries = par' $ map ((\trieFindMerge' tries . tail) ngrams
221 candidates = par' $ map (topBToks b) beamTries
222 scoredCands = scoreCandidates $ zip4 ngrams scores hists candidates
223 sortedCands = sortBy finalScoresAsc scoredCands
224 (ngrams', scores', hists') = unzip3 $ map fst $ take b sortedCands
if randExitFlag == 0
 then return histStr
else beamSearch b tries ngrams' scores' hists' input
where finalScoresAsc ((_, s1, _), p1) ((_, s2, _), p2) = compare (s2 - p2) (s1 - p1)

wordAtIndex :: Int -> [(Token, Trie)] -> Token
wordAtIndex _ [] = "" -- Couldn't find any child word (i.e. method was called on leaf)
wordAtIndex i ((tok, Trie c):rest)
 | i <= 0 = tok
 | otherwise = wordAtIndex (i - c) rest

randomSearchTok :: NGram -> [Trie] -> IO Token
randomSearchTok ngram tries = do
 let (Trie c m) = trieFindMerge ngram tries
 idx <- randomRIO (0, c - 1)
 let tok = wordAtIndex idx $ M.toList m
 if T.null tok -- Couldn't find next word, back off stupidly!
 then randomSearchTok (tail ngram) tries
 else return tok

randomSearch :: [Trie] -> NGram -> IO String
randomSearch _ [] = error "Random search failed" -- Not reachable
randomSearch tries (_:grams) = do
 randExitFlag <- randomRIO (0, 100 :: Int)
 if randExitFlag == 0
 then return "...
 else do
 tok <- randomSearchTok grams tries
 rest <- randomSearch tries (grams ++ [tok])
 return $ T.unpack tok ++ " " ++ rest

lineComplete :: String -> [Trie] -> Int -> UntokenizedLine -> IO String
lineComplete mode tries n line = do
 lastNGram =
 (last . divvy n 1 . (replicate (n - 1) bosToken ++) . tokenize) line
 launchBeamSearch b = beamSearch b tries [lastNGram] [0] [[]] line
 case mode of
 "beamSearch" -> launchBeamSearch 5
 "greedy" -> launchBeamSearch 1
 "random" -> do
 putStr $ T.unpack line ++ " "
 randomSearch tries lastNGram
 _ ->
 error $ "Mode " ++ mode ++
 " is unsupported. Please choose from [beamSearch, greedy, random]."

app/Main.hs

module Main where

import Control.DeepSeq (deepseq)
import Control.Monad (join)
import Data.Monoid ((<>))
import qualified Data.Text.Lazy as T
import qualified Data.Text.Lazy.IO as TIO
import Lib
import Options.Applicative
import System.Exit (die, exitSuccess)
import System.IO (hFlush, stdout)

-- Adapted with permission from https://bit.ly/35WGzyB
main :: IO ()
main = join . customExecParser (prefs showHelpOnError) $ info (helper <> parser)
 (fullDesc <>
 header
 "Parallelized N-Gram Language Modeling with Stupid Backoff for Text Generation" <>
 progDesc "Build a language model from a given corpus, then use it to assign" ++
 " probability scores to input lines, or to auto-complete them" ++
 " (similar to your smartphone keyboard).")

where
 parser :: Parser (IO ()
parser =
work <$> strOption
 (long "mode" <> short 'm' <> metavar "MODE"
 <> help "Operating mode (buildOnly, score, complete)") <>
strOption
 (long "corpus-file" <> short 'f' <> metavar "FILENAME"
 <> help "Path to corpus file") <>
option auto
 (long "ngrams" <> short 'n' <> metavar "NUMBER" <> help "Size of n-gram"
 <> value 3 <> showDefault) <>
option auto
 (long "ndocs" <> metavar "NUMBER" <> value (-1) <> showDefault <>
 help "Number of documents to parse (-1 to parse all)") <>
strOption
 (long "doc-separator" <> short 's' <> metavar "SEPARATOR" <>
 value "---END.OF.DOCUMENT---" <> showDefault <>
 help "Line that separates documents in corpus") <>
option auto
 (long "freq-threshold" <> short 't' <> metavar "NUMBER" <> value 0 <> showDefault <>
 help "Prune all n-grams that occur fewer than k times") <>
strOption
 (long "complete-mode" <> metavar "MODE" <> value "beamSearch" <> showDefault <>
 help "Operating mode if --mode=complete (beamSearch, greedy, random)"
)

work :: String -> String -> Int -> Int -> String -> Int -> String -> IO ()
work mode corpusFile nDocs docSep thresh completeMode = do
corpusText <- TIO.readFile corpusFile
 let untokCorpus =
 splitIntoDocs (T.pack docSep) $ filter (/= T.empty) $ T.lines corpusText
 corpus = par' $ map (map tokenize) untokCorpus
 maybePartialCorpus = if nDocs < 0 then corpus else take nDocs corpus
 nGramTries = triesFrom n thresh maybePartialCorpus
 if mode == "buildOnly" then do
 putStrLn "Building n-gram model..."
 putStrLn $ nGramTries `deepseq" Built."
 exitSuccess
 else if mode == "score" then scoreLoop nGramTries n
 else if mode == "complete" then completeLoop nGramTries n completeMode
 else die $ "Mode must be one of [score, complete]. You gave " ++ mode ++ "."

promptLoop :: String -> (String -> IO String) -> IO ()
promptLoop prompt f = do
putStrLn prompt
hFlush stdout
line <- getline
if null line
 then return ()
else do
 out <- f line
 putStrLn out
 promptLoop prompt f

scoreLoop :: [Trie] -> Int -> IO ()
scoreLoop tries n = promptLoop "Score> " $ return . show . lineScore tries n . T.pack

completeLoop :: [Trie] -> Int -> String -> IO ()
completeLoop tries n mode = promptLoop "Complete> " $ lineComplete mode tries n . T.pack